This study investigates how background music influences learning with respect to three different theoretical approaches. Both the Mozart effect as well as the arousal-mood-hypothesis indicate that background music can potentially benefit learning outcomes. While the Mozart effect assumes a direct influence of background music on cognitive abilities, the arousal-mood-hypothesis assumes a mediation effect over arousal and mood. However, the seductive detail effect indicates that seductive details such as background music worsen learning. Moreover, as working memory capacity has a crucial influence on learning with seductive details, we also included the learner’s working memory capacity as a factor in our study. We tested 81 college students using a between-subject design with half of the sample listening to two pop songs while learning a visual text and the other half learning in silence. We included working memory capacity in the design as a continuous organism variable. Arousal and mood scores before and after learning were collected as potential mediating variables. To measure learning outcomes we tested recall and comprehension. We did not find a mediation effect between background music and arousal or mood on learning outcomes. In addition, for recall performance there were no main effects of background music or working memory capacity, nor an interaction effect of these factors. However, when considering comprehension we did find an interaction between background music and working memory capacity: the higher the learners’ working memory capacity, the better they learned with background music. This is in line with the seductive detail assumption.
According to Cognitive Load Theory, learning material should be designed in a way to decrease unnecessary demands on working memory (WM). However, recent research has shown that additional demands on WM caused by less legible texts lead to better learning outcomes. This so-called disfluency effect can be assumed as a metacognitive regulation process during which learners assign their cognitive resources depending on the perceived difficulty of a cognitive task. Increasing the perceived difficulty associated with a cognitive task stimulates deeper processing and a more analytic and elaborative reasoning. Yet there are studies which could not replicate the disfluency effect indicating that disfluency might be beneficial only for learners with particular learner characteristics. Additional demands on working memory caused by disfluent texts are possibly just usable by learners with a high working memory capacity. Therefore the present study investigated the aptitude-treatmentinteraction between working memory capacity and disfluency. Learning outcomes were measured by means of a retention, a comprehension, and a transfer test. Moreover, the three types of cognitive load (intrinsic, extraneous, and germane) were assessed. The results revealed significant aptitude-treatment-interaction effects with respect to retention and comprehension. Working memory capacity had a significant influence only in the disfluency condition: The higher the working memory capacity, the better the retention and comprehension performance in the disfluency condition. No effects were found with respect to transfer or cognitive load. Thus, the role of metacognitive regulation and its possible effects on cognitive load need further investigation.
SummarySeductive details in general affect learning and cognitive load negatively. However, especially background music as a seductive detail may also influence the learner's arousal, whose optimal level depends on the learner's extraversion. Therefore, the effects of extraversion and background music on learning outcomes, cognitive load, and arousal were investigated. We tested 167 high school students and found better transfer outcomes for the group with background music. They also reported higher germane load, but no impact of background music on extraneous cognitive load or arousal was found. In the group without background music, learners with higher extraversion reached better recall scores, which was not found in the group with background music. Results may cautiously be interpreted that there is a beneficial impact of background music that compensates for the disadvantages of low extraverted learners and which cannot be explained through arousal.
This study investigates the possibilities of fostering learning based on differences in recall and comprehension after learning with texts which were presented in one of three modalities: either in a spoken, written, or sung version. All three texts differ regarding their processing, especially when considering working memory. Overall, we assume the best recall performance after learning with the written text and the best comprehension performance after learning with the sung text, respectively, compared to both other text modalities. We also analyzed whether the melody of the sung material functions as a mnemonic aid for the learners in the sung text condition. If melody and text of the sung version are closely linked, presentation of the melody during the post-test phase could foster text retrieval. 108 students either learned from a sung text performed by a professional singer, a printed text, or the same text read out loud. Half of the participants worked on the post-test while listening to the melody used for the musical learning material and the other half did not listen to a melody. The written learning modality led to significantly better recall than with the spoken (d = 0.97) or sung text (d = 0.78). However, comprehension after learning with the sung modality was significantly superior compared to when learning with the written learning modality (d = 0.40). Reading leads to more focus on details, which is required to answer recall questions, while listening fosters a general understanding of the text, leading to higher levels of comprehension. Listening to the melody during the post-test phase negatively affected comprehension, irrespective of the modality during the learning phase. This can be explained by the seductive detail effect, as listening to the melody during the post-test phase may distract learners from their main task. In closing, theoretical and practical implications are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.