The predominant grazing management practice of the Kansas Flint Hills involves annual prescribed burning in March or April with post-fire grazing by yearling beef cattle at a high stocking density from April to August. There has been a dramatic increase in sericea lespedeza (Lespedeza cuneata [Dumont] G. Don) coincident with this temporally-focused use of prescribed fire in the Flint Hills region. The species is an aggressive invader and a statewide noxious weed in Kansas. Control has generally been attempted using repeated herbicide applications. This approach has not limited proliferation of sericea lespedeza and resulted in collateral damage to non-target flora and fauna. Alternative timing of prescribed fire has not been evaluated for its control. Our objectives for this 4-yr experiment were to (1) document the effects of prescribed burning during early April, early August, or early September on vigor of sericea lespedeza, standing forage biomass, and basal cover of native graminoids, forbs, and shrubs and (2) measure responses to fire regimes by grassland bird and butterfly communities. Whole-plant dry mass, basal cover, and seed production of sericea lespedeza were markedly less (P < 0.01) in areas treated with prescribed fire in August or September compared with April. Forage biomass did not differ (P ≥ 0.43) among treatments when measured during July; moreover, frequencies of bare soil, litter, and total basal plant cover were not different (P ≥ 0.29) among treatments. Combined basal covers of C4 grasses, C3 grasses, annual grasses, forbs, and shrubs also did not differ (P ≥ 0.11) between treatments. Densities of grasshopper sparrow (Ammodramus savannarum), dickcissel (Spiza americana), and eastern meadowlark (Sturnella magna) were not negatively affected (P > 0.10) by mid-summer or late-summer fires relative to early-spring fires. There were no differences (P > 0.10) in densities of grassland-specialist butterfly species across fire regimes. Under the conditions of our experiment, prescribed burning during summer produced no detrimental effects on forage production, desirable non-target plant species, grassland birds, or butterfly communities but had strong suppressive effects on sericea lespedeza. Additional research is warranted to investigate how to best incorporate late-summer prescribed fire into common grazing-management practices in the Kansas Flint Hills.
Recent research demonstrated that mid- or late-summer prescribed fires can be employed to manage sericea lespedeza (Lespedeza cuneata) infestations in the Kansas Flint Hills. The effects of prescribed fire applied during the growing season (i.e., August to October) on grazing performance of yearling cattle have not been evaluated. Native pastures (n = 18; 22 ± 4.0 ha) were grouped by watershed and assigned randomly to 1 of 3 prescribed-fire treatments: spring (7 April ± 2.1 d), summer (21 August ± 5.7 d), or autumn (2 October ± 9.9 d). Yearling beef cattle were grazed from May to August at a targeted stocking density of 280 kg live-weight ˖ ha -1 following prescribed fire application. Forage biomass accumulations, soil cover, plant species composition, and root carbohydrate concentrations in four native plant species were evaluated. Total BW gains and ADG were greater (P = 0.01) for cattle that grazed the spring and summer prescribed-fire treatments compared with those that grazed the autumn prescribed-fire treatment. As a result, final BW were greater (P = 0.04) in the spring and summer treatments than the autumn treatment. Conversely, forage biomass accumulations did not differ (P = 0.91) between fire regimes. Proportions of bare soil were greater (P < 0.01) in the spring treatment compared with the summer and autumn treatments, whereas proportions of litter on the soil surface were greater (P < 0.01) in summer- and autumn-burned pastures compared with spring-burned pastures. Total basal cover of graminoids and forbs did not differ (P ≤ 0.15) between prescribed fire treatments. Likewise, total basal cover of C3 or C4 perennial grasses did not differ (P ≥ 0.23) between prescribed fire treatments. No treatment differences (P = 0.24) in root starch or root water-soluble carbohydrate concentrations in big bluestem (Andropogon gerardii), little bluestem (Schizachyrium scoparium), Indiangrass (Sorghastrum nutans), or purple prairieclover (Dalea purpurea) were detected. These data were interpreted to suggest that summer or autumn prescribed fire can be applied without reducing forage biomass accumulations, root carbohydrate concentrations in key native plant species, or considerably altering native plant populations compared with conventional spring-season prescribed fire; however, summer prescribed fire could be favored over spring or autumn prescribed fire to both maintain stocker cattle growth performance and to achieve control over sericea lespedeza.
Sericea lespedeza (Lespedeza cuneata; SL) is a high-tannin, invasive forb in the Tallgrass Prairie ecosystem. In Kansas, sericea lespedeza infests 980 square miles of pasture, primarily in the Flint Hills region. Sericea lespedeza infestations reduce native grass production by up to 92% through a combination of aggressive growth, prolific reproduction, canopy dominance, and chemical inhibition (allelopathy). Herbicides retard the spread of sericea lespedeza, but application is laborious and expensive; moreover, herbicides are lethal to ecologically-important, non-target plant species.Increased grazing pressure on sericea lespedeza by domestic herbivores may slow its spread and facilitate some measure of biological control. Unfortunately, mature plants contain high levels of condensed tannins, which are a strong deterrent to grazing by beef cattle. Small ruminants have greater tolerance for condensed tannins than beef cattle. Sheep, in particular, appear less susceptible to certain plant toxins than beef cattle and may be useful to selectively pressure noxious weeds like sericea lespedeza.The predominant grazing management practice in the Flint Hills region of Kansas involves annual spring burning followed by intensive grazing with yearling beef cattle from April to August. During seasonal grazing, 40 to 60% of annual graminoid production is removed and pastures remain idle for the remainder of the year. Under this prevailing management practice, invasion by sericea lespedeza into the Tallgrass Prairie biome has steadily increased. Sericea lespedeza flowers and produces seed in late summer from August to September. The absence of grazing pressure during this interval strongly promotes seed production, seed distribution, and continued invasion of the Flint Hills ecoregion by this noxious weed. Therefore, the objective of our study was to evaluate effects of late-season sheep grazing following locally-conventional steer grazing on vigor and reproductive capabilities of sericea lespedeza.
Sericea lespedeza (SL) was introduced into the United States from Asia in the late 19th century. Early land managers recognized that SL was adaptable; tolerant of shallow, acidic or low-fertility soils; and resistant to insects and disease. This combination of traits made SL a widely-used plant for reseeding strip-mined lands, highway right-ofways, dams, and waterways in the US for nearly a century. Regrettably, SL is highly fecund. Individual plants are capable of producing up to 850 lb of seed per acre annually. Vigorous seed production allows SL to rapidly infiltrate native grasslands that are adjacent to reseeding projects; seed can be transported great distances via the alimentary canal and hair of wild and domestic herbivores. In Kansas alone, SL has infested approximately 980 square miles of pasture, primarily in the Flint Hills region. The resulting damage to native habitats for wildlife and pasture quality for domestic herbivores has been devastating. The predominant grazing management practice in the Kansas Flint Hills involves annual spring burning in March or April, followed by intensive grazing with yearling beef cattle for a relatively short period from April to August. During seasonal grazing, 40 to 60% of annual graminoid production is removed and grazing lands then remain idle for the remainder of the year. Under this prevailing management practice, invasion by SL into the Tallgrass Prairie biome has steadily increased. Oklahoma State University researchers speculated that dormant-season, spring fires may stimulate SL growth by scarifying seeds lying on the surface of the soil. In contrast, plants with robust canopies respond more strongly to growingseason prescribed burns than to dormant-season prescribed burns. Previous research reported that application of growing season fire at 3-yr intervals decreased the rate of SL invasion. Therefore, the objective of our study was to evaluate the effects of growing-season prescribed burning of native tallgrass range on vigor of sericea lespedeza.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.