In this work we study the behavior of the optical phonon modes in bilayer graphene devices by applying top gate voltage, using Raman scattering. We observe the splitting of the Raman G band as we tune the Fermi level of the sample, which is explained in terms of mixing of the Raman (Eg) and infrared (Eu) phonon modes, due to different doping in the two layers. We theoretically analyze our data in terms of the bilayer graphene phonon self-energy which includes non-homogeneous charge carrier doping between the graphene layers. We show that the comparison between the experiment and theoretical model not only gives information about the total charge concentration in the bilayer graphene device, but also allows to separately quantify the amount of unintentional charge coming from the top and the bottom of the system, and therefore to characterize the interaction of bilayer graphene with its surrounding environment.
We have developed a dry transfer method that allows graphene to be transferred from polymerthyl-methacrylate (PMMA)/Si (silicon) substrates on commercially available hexagonal boron nitride (hBN) crystals. With this method we are able to fabricate graphene devices with little wrinkles and bubbles in graphene sheets, but that do not degrade the electronic quality more than the SiO2 substrate does. For hBN to perform the function described above substrate cleanliness is critical to get high quality graphene devices. Using hBN as a substrate, graphene exhibits enhanced mobility, reduced carrier inhomogeneity, and reduced intrinsic doping compared to graphene on SiO2 substrate.
We have fabricated graphene devices on lightly doped Si substrates and show that pronounced changes in resistance versus gate voltage, R(Vg), characteristics of these devices at 77 K are induced by the variation in the charge distribution in substrate with both gate voltage and illumination. The R(Vg) of the graphene devices in the dark shows remarkable changes as the carriers in the underlying substrate go through accumulation, depletion, and inversion regimes. We demonstrate the possibility of using a graphene device as an optical-latch.
A method of ac dielectrophoresis was applied to align and deposit metallic multi-wall
carbon nanotubes between pre-fabricated metal (Au, Pd) electrodes with a micron scale separation.
For improvement of nanotube contacts with electrodes, Ni and Pd electroless processes were
developed, and significant reduction of 2 terminals resistances was demonstrated. Further, using
electron and ion beam deposited Pt contacts in two different configurations (“Pt-on-CNT” and
“CNT-on-Pt”), 4 terminals measurements have been performed to evaluate intrinsic nanotube
resistances. The values between 90 and 130 kΩ/μm were obtained, while systematically lower
values (30-70 kΩ/μm) were estimated using 2 terminals method. The 4 terminals method was
applied to study the effect of ion irradiation on the electrical parameters of supported nanotubes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.