We have measured the ground state of ferromagnetic Josephson junctions using a single dc SQUID (superconducting quantum interference device).We show that the Josephson coupling is either positive (0 coupling) or negative (pi coupling) depending on the ferromagnetic layer thickness. As expected, the sign change of the Josephson coupling is observed as a shift of half a quantum flux in the SQUID diffraction pattern when operating in the linear limit.
In this article we describe the effect of ion irradiation on high-Tc superconductor thin film and its interest for the fabrication of Josephson junctions. In particular, we show that these alternative techniques allow to go beyond most of the limitations encountered in standard junction fabrication methods, both in the case of fundamental and technological purposes. Two different geometries are presented: a planar one using a single high-Tc film and a mesa one defined in a trilayer structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.