Engineering practice shows that the deformation of the slide-resistant pile may be transferred to the adjacent bridge foundation on an inclined slope, which can compromise the safety of the entire bridge. However, this phenomenon has rarely been considered in the past. To reveal the deformation transfer mechanism between the slide-resistant pile and the adjacent structures, a full-scale field test was performed on a high and steep slope located in a section of a certain railway. A numerical analysis model was constructed to simulate the field test and validate its parameters. Moreover, parametric analysis was also conducted to examine the influence of the pile length, pile diameter, and arrangement of the pile foundation. The results show that the bridge pile foundation is simultaneously affected by the “load transfer effect” caused by the slide-resistant pile and “traction effect” of the sliding slope. With the distance between the pile foundation and the slide-resistant pile increasing, the dominant factor affecting the deformation mode of the pile body is switched from the “load transfer effect” to the “traction effect.” Furthermore, a critical embedment depth exists for the bridge pile foundation built on a high and steep slope, which varies at different locations along the inclined stratum. In addition, using a pile arrangement with a larger pile diameter and lower number of piles is more beneficial for controlling the horizontal displacement of the bridge foundation. The results of the research provide a reference for the safety control of the engineering on the high and steep slope.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.