Evaporation duct is a specific atmospheric structure at sea, which has an important influence on the propagation path of electromagnetic waves (EW). Considering the limit of existing evaporation duct height (EDH) prediction models and aiming at proposing more accurate and stronger generalization ability of EDH models, we applied eXtreme Gradient Boosting (XGBoosting) algorithm to the field of evaporation duct for the first time. And we proposed the new EDH prediction model using XGBoost algorithm (XGB model). Simultaneously, traditional Paulus-Jeske (PJ) model and deep learning Multilayer Perceptron (MLP) model were introduced into the experiment to make a comparison. In terms of comprehensive performance, XGB model is optimal in all sub-regions and total area. Finally, cross-learning experiments were carried out to test the generalization ability of XGB model. The results show that the generalization ability of XGB model is better than that of MLP model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.