Abstract. Noah (version 2.7.1), the community landsurface model (LSM) of National Centers for Environmental Predictions-National Center for Atmospheric Research (NCEP-NCAR), which is widely used to describe the landsurface processes either in stand-alone or in coupled landatmospheric model systems, is recognized to underestimate snow-water equivalent (SWE). Noah's SWE bias can be attributed to its simple snow sub-model, which does not effectively describe the physical processes during snow accumulation and melt period. To improve SWE simulation in the Noah LSM, the Utah Energy Balance (UEB) snow model is implemented in Noah to test alternate snow surface temperature and snowmelt outflow schemes. Snow surface temperature was estimated using the force-restore method and snowmelt event is regulated by accounting for the internal energy of the snowpack. The modified Noah's SWE simulations are compared with the SWE observed at California's NRCS SNOTEL stations for 7 water years: 2002-2008, while the model's snow surface temperature is verified with observed surface-temperature data at an observation site in Utah. The experiments show that modification in Noah's snow process substantially reduced SWE estimation bias while keeping the simplicity of the Noah LSM. The results suggest that the model did not benefit from the alternate temperature representation but primary improvement can be attributed to the substituted snowmelt process.
This study examines the capabilities and limitations of the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM5) in predicting the precipitation and circulation features that accompanied the 2004 North American monsoon (NAM). When the model is reinitialized every 5 days to restrain the growth of modeling errors, its results for precipitation checked at subseasonal time scales (not for individual rainfall events) become comparable with ground-and satellitebased observations as well as with the NAM's diagnostic characteristics. The modeled monthly precipitation illustrates the evolution patterns of monsoon rainfall, although it underestimates the rainfall amount and coverage area in comparison with observations. The modeled daily precipitation shows the transition from dry to wet episodes on the monsoon onset day over the Arizona-New Mexico region, and the multiday heavy rainfall (Ͼ1 mm day Ϫ1 ) and dry periods after the onset. All these modeling predictions agree with observed variations. The model also accurately simulated the onset and ending dates of four major moisture surges over the Gulf of California during the 2004 monsoon season. The model reproduced the strong diurnal variability of the NAM precipitation, but did not predict the observed diurnal feature of the precipitation peak's shift from the mountains to the coast during local afternoon to late night. In general, the model is able to reproduce the major, critical patterns and dynamic variations of the NAM rainfall at intraseasonal time scales, but still includes errors in precipitation quantity, pattern, and timing. The numerical study suggests that these errors are due largely to deficiencies in the model's cumulus convective parameterization scheme, which is responsible for the model's precipitation generation.
Diurnal variability is an important yet poorly understood aspect of the warm-season precipitation regime over southwestern North America. In an effort to improve its understanding, diurnal variability is investigated numerically using the fifth-generation Pennsylvania State University (PSU)-NCAR Mesoscale Model (MM5). The goal herein is to determine the possible influence of spatial resolution on the diurnal cycle.The model is initialized every 48 h using the operational NCEP Eta Model 212 grid (40 km) model analysis. Model simulations are carried out at horizontal resolutions of both 9 and 3 km. Overall, the model reproduces the basic features of the diurnal cycle of rainfall over the core monsoon region of northwestern Mexico and the southwestern United States. In particular, the model captures the diurnal amplitude and phase, with heavier rainfall at high elevations along the Sierra Madre Occidental in the early afternoon that shifts to lower elevations along the west slopes in the evening. A comparison to observations (gauge and radar data) shows that the high-resolution (3 km) model generates better rainfall distributions on time scales from monthly to hourly than the coarse-resolution (9 km) model, especially along the west slopes of the Sierra Madre Occidental. The model has difficulty with nighttime rainfall along the slopes, over the Gulf of California, and over Arizona.A comparison of surface wind data from three NCAR Integrated Sounding System (ISS) stations and the Quick Scatterometer (QuikSCAT) to the model reveals a low bias in the strength of the Gulf of California low-level jet, even at high resolution. The model results indicate that outflow from convection over northwestern Mexico can modulate the low-level jet, though the extent to which these relationships occur in nature was not investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.