Abstract-Optical Burst Switching(OBS) is a promising paradigm for the next-generation Internet. In OBS, a key problem is to schedule bursts on wavelength channels whose bandwidth may become fragmented with the so-called void (or idle) intervals with both fast and bandwidth efficient algorithms so as to reduce burst loss. To date, only two scheduling algorithms, called Horizon and LAUC-VF, have been proposed, which trade off bandwidth efficiency for fast running time and vice versa, respectively.In this paper, we propose several novel algorithms for scheduling bursts in OBS networks with and without Fiber Delay Lines (FDLs). In networks without FDLs, our proposed Min-SV algorithm can schedule a burst successfully in O(logm) time, where m is the total number of void intervals, as long as there is a suitable void interval. Simulation results suggest that our algorithm achieves a loss rate which is at least as low as the best previously known algorithm LAUC-VF, but can run much faster. In fact, its speed can be almost the same as Horizon (which has a much higher loss rate). In networks with FDLs, our proposed Batching FDL algorithm considers a batch of FDLs simultaneously to find a suitable FDL to delay a burst which would otherwise be discarded due to contention, instead of considering the FDLs one by one. The average search time of this algorithm is therefore significantly reduced from that of the existing sequential search algorithms.
Numerous two-cell voltage-clamp studies have concluded that the electrical conductance of mammalian cardiac gap junctions is not modulated by the transjunctional voltage (Vj) profile, although gap junction channels between low conductance pairs of neonatal rat ventricular myocytes are reported to exhibit Vj-dependent behavior. In this study, the dependence of macroscopic gap junctional conductance (gj) on transjunctional voltage was quantitatively examined in paired 3-d neonatal hamster ventricular myocytes using the double whole-cell patch-clamp technique. Immunolocalization with a site-specific antiserum directed against amino acids 252-271 of rat connexin43, a 43-kD gap junction protein as predicted from its cDNA sequence, specifically stained zones of contact between cultured myocytes. Instantaneous current-voltage (Ij-Vj) relationships of neonatal hamster myocyte pairs were linear over the entire voltage range examined (0 less than or equal to Vj less than or equal to +/- 100 mV). However, the steady-state Ij-Vj relationship was nonlinear for Vj greater than +/- 50 mV. Both inactivation and recovery processes followed single exponential time courses (tau inactivation = 100-1,000 ms, tau recovery approximately equal to 300 ms). However, Ij recovered rapidly upon polarity reversal. The normalized steady-state junctional conductance-voltage relationship (Gss-Vj) was a bell-shaped curve that could be adequately described by a two-state Boltzmann equation with a minimum Gj of 0.32-0.34, a half-inactivation voltage of -69 and +61 mV and an effective valence of 2.4-2.8. Recordings of gap junction channel currents (ij) yielded linear ij-Vj relationships with slope conductances of approximately 20-30 and 45-50 pS. A kinetic model, based on the Boltzmann relationship and the polarity reversal data, suggests that the opening (alpha) and closing (beta) rate constants have nearly identical voltage sensitivities with a Vo of +/- 62 mV. The data presented in this study are not consistent with the contingent gating scheme (for two identical gates in series) proposed for other more Vj-dependent gap junctions and alternatively suggest that each gate responds to the applied Vj independently of the state (open or closed) of the other gate.
Prediction of ice formation in clouds presents one of the grand challenges in the atmospheric sciences. Immersion freezing initiated by ice-nucleating particles (INPs) is the dominant pathway of primary ice crystal formation in mixed-phase clouds, where supercooled water droplets and ice crystals coexist, with important implications for the hydrological cycle and climate. However, derivation of INP number concentrations from an ambient aerosol population in cloud-resolving and climate models remains highly uncertain. We conducted an aerosol-ice formation closure pilot study using a field-observational approach to evaluate the predictive capability of immersion freezing INPs. The closure study relies on co-located measurements of the ambient size-resolved and single-particle composition and INP number concentrations. The acquired particle data serve as input in several immersion freezing parameterizations, that are employed in cloud-resolving and climate models, for prediction of INP number concentrations. We discuss in detail one closure case study in which a front passed through the measurement site, resulting in a change of ambient particle and INP populations. We achieved closure in some circumstances within uncertainties, but we emphasize the need for freezing parameterization of potentially missing INP types and evaluation of the choice of parameterization to be employed. Overall, this closure pilot study aims to assess the level of parameter details and measurement strategies needed to achieve aerosol-ice formation closure. The closure approach is designed to accurately guide immersion freezing schemes in models, and ultimately identify the leading causes for climate model bias in INP predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.