We hypothesized that exercise preconditioning strengthens brain microvascular integrity against ischemia/reperfusion injury through the tumor necrosis factor (TNF)-integrin signaling pathway. Adult male Sprague Dawley rats (n = 24) were studied in: (1) exercise (the animals run on a treadmill 30 min each day) for 3 weeks, (2) non-exercise. Six animals from each group (n = 12) were subjected to stroke, the remaining animals served as controls (n = 6 x 2). Brain infarction and edema were determined by Nissl staining. Cerebral integrin expression was detected by immunochemistry and stereological methods. In addition, we used flow cytometry to address the causal role of TNF-alpha in inducing the expression of integrins in the human umbilical vein endothelial cells under TNF-alpha or vascular endothelial growth factor (VEGF) pretreatment. Exercise reduces brain infarction and brain edema in stroke. Expressions of integrin subunit alpha(1), alpha(6), beta(1), and beta(4) were increased after exercise. Exercise preconditioning reversed stroke-reduced integrin expression. An in vitro study revealed a causal link between the gradual upregulation of TNF-alpha (rather than VEGF) and cellular expression of integrins. These results demonstrated an increase in cerebral expression of integrins and a decrease in brain injury from stroke after exercise preconditioning. The study suggests that upregulation of integrins during exercise enhances neurovascular integrity after stroke. The changes in integrins might be altered by TNF-alpha.
The ArsAB ATPase is an efflux pump located in the inner membrane of Escherichia coli. This transport ATPase confers resistance to arsenite and antimonite by their extrusion from the cells. The pump is composed of two subunits, the catalytic ArsA subunit and the membrane subunit ArsB. The complex is similar in many ways to ATP-binding cassette ('ABC') transporters, which typically have two groups of six transmembrane-spanning helical segments and two nucleotide-binding domains (NBDs). The 45 kDa ArsB protein has 12 transmembrane-spanning segments. ArsB contains the substrate translocation pathway and is capable of functioning as an anion uniporter. The 63 kDa ArsA protein is a substrate-activated ATPase. It has two homologous halves, A1 and A2, which are clearly the result of an ancestral gene duplication and fusion. Each half has a consensus NBD. The mechanism of allosteric activation of the ArsA ATPase has been elucidated by a combination of molecular genetics and biochemical, structural and kinetic analyses. Conformational changes produced by binding of substrates, activator and/or products could be revealed by stopped-flow fluorescence measurements with single-tryptophan derivatives of ArsA. The results demonstrate that the rate-limiting step in the overall reaction is a slow isomerization between two conformations of the enzyme. Allosteric activation increases the rate of this isomerization such that product release becomes rate-limiting, thus accelerating catalysis. ABC transporters, which exhibit similar substrate activation of ATPase activity, can undergo similar conformational changes to overcome a rate-limiting step. Thus the ArsAB pump is a useful model for elucidating mechanistic aspects of the ABC superfamily of transport ATPases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.