Thrust measurements were performed on a coil made of YBa 2 Cu 3 O 7-δ coated conductor acting as the excitation system of a single-sided linear synchronous motor. The superconducting coil was a single pancake in the shape of a racetrack with 100 turns, the width and effective lengths were 42 mm and 84 mm, respectively. The stator was made of conventional copper wire. At 77 K and a gap of 10 mm, with an operating direct current of I DC =30 A for the superconducting coil and alternating current of I AC =9 A for the stator coils, thrust of 24 N was achieved. With addition of an iron core, thrust was increased by 49%. With addition of an iron back plate, thrust was increased by 70%.
Four coils made of YBCO-coated conductor wire were fabricated and connected in series to make up the excitation system of a linear synchronous motor system with a stator made of ordinary copper wire. The electromagnetic forces experienced by the superconducting coils with respect to the stator were studied in the static case. We began with the study of one single coil, followed by two coils connected in series, and finally, four coils in series from which the largest force obtained was of 53.9 N at a gap of 10 mm at 77 K. The critical current, n-value, and inductance were also measured for the coils so that the power dissipation of the field windings can be calculated. This paper also helps us understand whether linear motors with superconducting components are currently economically feasible with present commercially available superconducting wire.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.