Millions of metric tons of plastics are produced annually and transported from land to the oceans. Finding the fate of the plastic debris will help define the impacts of plastic pollution in the ocean. Here, we report the abundances of microplastic in the deepest part of the world's ocean. We found that microplastic abundances in hadal bottom waters range from 2.06 to 13.51 pieces per litre, several times higher than those in open ocean subsurface water. Moreover, microplastic abundances in hadal sediments of the Mariana Trench vary from 200 to 2200 pieces per litre, distinctly higher than those in most deep sea sediments. These results suggest that manmade plastics have contaminated the most remote and deepest places on the planet. The hadal zone is likely one of the largest sinks for microplastic debris on Earth, with unknown but potentially damaging impacts on this fragile ecosystem.
ABSTRACT:The crystallization and melting behavior of poly(-hydroxybutyrate-co--hydroxyvalerate) (PHBV) and a 30/70 (w/w) PHBV/poly(propylene carbonate) (PPC) blend was investigated with differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR). The transesterification reaction between PHBV and PPC was detected in the melt-blending process. The interaction between the two macromolecules was confirmed by means of FTIR analysis. During the crystallization process from the melt, the crystallization temperature of the PHBV/PPC blend decreased about 8°C, the melting temperature was depressed by 4°C, and the degree of crystallinity of PHBV in the blend decreased about 9.4%; this was calculated through a comparison of the DSC heating traces for the blend and pure PHBV. These results indicated that imperfect crystals of PHBV formed, crystallization was inhibited, and the crystallization ability of PHBV was weakened in the blend. The equilibrium melting temperatures of PHBV and the 30/70 PHBV/PPC blend isothermally crystallized were 187.1 and 179°C, respectively. The isothermal crystallization kinetics were also studied. The fold surface free energy of the developing crystals of PHBV isothermally crystallized from the melt decreased; however, a depression in the relative degree of crystallization, a reduction of the linear growth rate of the spherulites, and decreases in the equilibrium melting temperature and crystallization capability of PHBV were detected with the addition of PPC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.