With a recently developed unique deep ultraviolet picoseconds time-resolved photoluminescence (PL) spectroscopy system and improved growth technique, we are able to determine the detailed band structure near the Γ point of wurtzite (WZ) AlN with a direct band gap of 6.12 eV. Combined with first-principles band structure calculations we show that the fundamental optical properties of AlN differ drastically from that of GaN and other WZ semiconductors. The discrepancy in energy band gap values of AlN obtained previously by different methods is explained in terms of the optical selection rules in AlN and is confirmed by measurement of the polarization dependence of the excitonic PL spectra.
The optical properties of AlxGa1−xN alloys with x varied from 0 to 0.35 have been investigated by picosecond time-resolved photoluminescence (PL) spectroscopy. Our results revealed that while the PL intensity decreases with an increase of Al content, the low-temperature PL decay lifetime increases with Al content. These results can be understood in terms of the effects of tail states in the density of states due to alloy fluctuation in the AlxGa1−xN alloys. The Al-content dependence of the energy-tail-state distribution parameter E0, which is an important parameter for determining optical and electrical properties of the AlGaN alloys, has been obtained experimentally. The PL decay lifetime increases with the localization energy and, consequently, increases with Al content. The implications of our findings to III-nitride optoelectronic device applications are also discussed.
Thermoelectric (TE) properties of InxGa1−xN alloys grown by metal organic chemical vapor deposition have been investigated. It was found that as indium concentration increases, the thermal conductivity decreases and power factor increases, which leads to an increase in the TE figure of merit (ZT). The value of ZT was found to be 0.08 at 300K and reached 0.23 at 450K for In0.36Ga0.64N alloy, which is comparable to those of SiGe based alloys. The results indicate that InGaN alloys could be potentially important TE materials for many applications, especially for prolonged TE device operation at high temperatures, such as for recovery of waste heat from automobile, aircrafts, and power plants due to their superior physical properties, including the ability of operating at high temperature/high power conditions, high mechanical strength and stability, and radiation hardness.
AlN epilayers were grown by metal organic chemical vapor deposition on sapphire substrates. X-ray diffraction measurements revealed that the threading dislocation (TD) density, in particular, the edge TD density, decreases considerably with increasing the epilayer thickness. Photoluminescence results showed that the intensity ratio of the band edge emission to the defect related emission increases linearly with increasing the epilayer thickness. Moreover, the dark current of the fabricated AlN metal-semiconductor-metal deep ultraviolet (DUV) photodetectors decreases drastically with the AlN epilayer thickness. The results suggested that one effective way for attaining DUV optoelectronic devices with improved performance is to increase the thickness of the AlN epilayer template, which results in the reduction of the TD density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.