The suitability of Si as an n-type dopant in hexagonal boron nitride (hBN) wide bandgap semiconductor has been investigated. Si doped hBN epilayers were grown via in-situ Si doping by metal organic chemical vapor deposition technique. Hall effect measurements revealed that Si doped hBN epilayers exhibit n-type conduction at high temperatures (T > 800 K) with an in-plane resistivity of ∼12 Ω·cm, electron mobility of μ ∼ 48 cm2/V·s and concentration of n ∼ 1 × 1016 cm−3. Temperature dependent resistivity results yielded a Si energy level in hBN of about 1.2 eV, which is consistent with a previously calculated value for Si substitutionally incorporated into the B sites in hBN. The results therefore indicate that Si is not a suitable dopant for hBN for room temperature device applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.