Abstract. With the fast expansion and controversial impacts of short-term rental platforms such as Airbnb, many cities have called for regulating this new business model. This research aims to establish an approach to understand the impact of Airbnb (and similar services) through big data analysis and provide insights potentially useful for its regulation. The paper reveals how Airbnb is influencing Beijing’s neighbourhood housing prices through machine learning and GIS. Machine learning models are developed to analyse the relationship between Airbnb activities in a neighbourhood and prevailing housing prices. The model of the best fit is then used to analyse the neighbourhood price sensitivity in view of increasing Airbnb activities. The results show that the sensitivity is variable: there are neighbourhoods that are likely to be more price sensitive to Airbnb activities, but also neighbourhoods that are likely to be price robust. Finally, the paper gives policy recommendations for regulating short-term rental businesses based on neighbourhood’s price sensitivity.
<p><strong>Abstract.</strong> Architectural building models (LoD3) consist of detailed wall and roof structures including openings, such as doors and windows. Openings are usually identified through corner and edge detection, based on terrestrial LiDAR point clouds. However, singular boundary points are mostly detected by analysing their neighbourhoods within a small search area, which is highly sensitive to noise. In this paper, we present a global-wide sliding window method on a projected fa&ccedil;ade to reduce the influence of noise. We formulate the gradient of point density for the sliding window to inspect the change of fa&ccedil;ade elements. With derived symmetry information from statistical analysis, border lines of the changes are extracted and intersected generating corner points of openings. We demonstrate the performance of the proposed approach on the static and mobile terrestrial LiDAR data with inhomogeneous point density. The algorithm detects the corners of repetitive and neatly arranged openings and also recovers angular points within slightly missing data areas. In the future we will extend the algorithm to detect disordered openings and assist to fa&ccedil;ade modelling, semantic labelling and procedural modelling.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.