Raman scattering and Fourier-transform infrared (FT-IR) attenuated transmission reflectance (ATR) spectra of two alpha-amino acids (alpha-AAs), i.e., glycine and leucine, were measured in H2O and D2O (at neutral pH and pD). This series of observed vibrational data gave us the opportunity to analyze vibrational features of both AAs in hydrated media by density functional theory (DFT) calculations at the B3LYP/6-31++G* level. Harmonic vibrational modes calculated after geometry optimization on the clusters containing each AA and 12 surrounding water molecules, which represent primary models for hydration scheme of amino acids, allowed us to assign the main observed peaks.
Structural information on acetylcholine and its two agonists, nicotine, and muscarine has been obtained from the interpretation of infrared spectra recorded in the gas-phase or in low pH aqueous solutions. Simulated IR spectra have been obtained using explicit water molecules or a polarization continuum model. The conformational space of the very flexible acetylcholine ions is modified by the presence of the solvent. Distances between its pharmacophoric groups cover a lower range in hydrated species than in isolated species. A clear signature of the shift of protonation site in nicotine ions is provided by the striking change of their infrared spectrum induced by hydration. On the contrary, structures of muscarine ions are only slightly influenced by the presence of water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.