Acute stimulation of cholesterol transport into mitochondria involves the cAMP-dependent protein kinase (PKA), peripheral-type benzodiazepine receptor (PBR), and the steroidogenesis acute regulatory (StAR) proteins. We investigated the respective role of these proteins in hormone-induced steroidogenesis. Oligonucleotides antisense, but not sense, to PBR and StAR reduced their respective levels in steroidogenic cells and inhibited hormone-stimulated steroid formation in MA-10 mouse Leydig tumor cells. In search of the proteins regulating PBR we identified a protein, PAP7, which interacts with PBR and the PKA regulatory subunit RIalpha, is present in adrenal and gonadal cells and is found in mitochondria. Overexpression of the full length PAP7 increased the hormone-induced steroid production. However, inhibition of PAP7 expression reduced the gonadotropin-induced steroid formation. In search of a PBR functional antagonist that would facilitate the studies on the biological function of PBR, we screened a phage display library. A 7-mer competitive PBR peptide antagonist was identified, which when transduced into Leydig cells inhibited the benzodiazepine and hormone-stimulated steroid production suggesting that the endogenous PBR agonist/receptor interaction is critical for the hormone-dependent steroidogenesis. These data indicate that hormone-induced cholesterol transport and the subsequent steroid formation is a dynamic multistep process involving protein-protein interactions.
It is well established that surfactants can elicit cytotoxic effects at threshold concentrations by changing the permeability and solubilizing components of cell membranes. The purpose of this study was to characterize the relationship between perturbation of the mitochondrial membrane resulting from treatment with representative cationic, nonionic, and anionic surfactants and the extent to which this perturbation affects steroid formation and StAR protein expression and activity in MA-10 Leydig cells. The StAR protein is synthesized as an active 37 kDa extramitochondrial form, which is processed into a 30 kDa intramitochondrial form after cholesterol transfer and mitochondrial import and processing. It has been shown in several in vitro studies that the mitochondrial electrochemical gradient is required for the StAR protein to transfer cholesterol to the inner mitochondrial membrane. Each substance that was tested produced a concentration-dependent decrease in steroid formation in hCG-stimulated MA-10 cells. Decreases in progesterone production were accompanied by loss of mitochondrial membrane potential and by a decrease in the levels of the 30 kDa form of the StAR protein. However, levels of the 37 kDa form of the StAR protein did not decrease, indicating no effect on StAR protein expression. These results demonstrate how perturbation of the mitochondrial membrane by surfactants inhibits import, processing, and cholesterol transfer activity and underscore the importance of including sensitive assays that evaluate mitochondrial function when screening for potential effects on steroidogenesis with in vitro test systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.