Abstract. Recent studies demonstrate that the Hadley Circulation has intensified and expanded for the past three decades, which has important implications for subtropical societies and may lead to profound changes in global climate. However, the robustness of this intensification and expansion that should be considered when interpreting long-term changes of the Hadley Circulation is still a matter of debate. It also remains largely unknown how the Hadley Circulation has evolved over longer periods. Here, we present long-term variability of the Hadley Circulation using the 20th Century Reanalysis. It shows a slight strengthening and widening of the Hadley Circulation since the late 1970s, which is not inconsistent with recent assessments. However, over centennial timescales , the Hadley Circulation shows a tendency towards a more intense and narrower state. More importantly, the width of the Hadley Circulation might have not yet completed a life-cycle since 1871. The strength and width of the Hadley Circulation during the late 19th to early 20th century show strong natural variability, exceeding variability that coincides with global warming in recent decades. These findings raise the question of whether the recent change in the Hadley Circulation is primarily attributed to greenhouse warming or to a long-period oscillation of the Hadley Circulation -substantially longer than that observed in previous studies.
Abstract. The modern instrumental record is analyzed in an attempt to reveal the dynamical structure and origins of the major modes of interannual variability of East Asian summer monsoon (EASM) and to elucidate their fundamental differences with the major modes of seasonal variability. These differences are instrumental in understanding of the forced (say orbital) and internal (say interannual) modes of variability in EASM. We show that the leading mode of interannual variation, which accounts for about 39% of the total variance, is primarily associated with decaying phases of major El Nino, whereas the second mode, which accounts for 11.3% of the total variance, is associated with the developing phase of El Nino/La Nina. The EASM responds to ENSO in a nonlinear fashion with regard to the developing and decay phases of El Nino. The two modes are determined by El Nino/La Nina forcing and monsoon-warm ocean interaction, or essentially driven by internal feedback processes within the coupled climate system. For this internal mode, the intertropical convergence zone (ITCZ) and subtropical EASM precipitations exhibit an out-of-phase variations; further, the Meiyu in Yangtze River Valley is also out-of-phase with the precipitation in the central North China.In contrast, the annual cycle forced by the solar radiation shows an in-phase variation between the ITCZ and the subtropical EASM precipitation. Further, the seasonal march of precipitation displays a continental-scale northward advance of a southwest-northeastward tilted rainband from mid-May toward the end of July. This coherent seasonal advance between Indian and East Asian monsoons suggests that the position of the northern edge of the summer monsoon over the Correspondence to: J. Liu (jianliu@niglas.ac.cn) central North China may be an adequate measure of the monsoon intensity for the forced mode. Given the fact that the annual modes share the similar external forcing with orbital variability, the difference between the annual cycle and interannual variation may help to understand the differences in the EASM variability on the orbital time scale and in the modern records.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.