We report on experimental investigations of the rheological behavior of aqueous magnetic suspensions. The suspended particles are monodisperse colloidal polystyrene spheres which contain magnetic Fe203-grains. In the absence of a magnetic field these suspensions behave as Newtonian fluids, whereas under the influence of a magnetic field due to the formation of an ordered structure the apparent viscosity of the suspension increases up to three orders of magnitude and they clearly exhibit non-Newtonian properties, such as shear thinning and yield stress. The apparent viscosity depends on the magnetic field according to aq - H2". Increasing the volume fraction of the particles in the range of 0.014 < 0 < 0.12 results in a linear increase in apparent viscosity and yield stress. Both apparent viscosity and yield stress depend also on the particle size as first measurements on particles with diameters ranging from 0.5 Am to 1.0,Am clearly show. All measurements were carried out with a rotation viscometer using the cone-plate configuration so that the applied shear rate was well defined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.