Winter wheat (Triticum aestivum L.) cultivars Yangmai 9 (water-logging tolerant) and Yumai 34 (water-logging sensitive) were subjected to water-logging (WL) from 7 d after anthesis to determine the responses of photosynthesis and anti-oxidative enzyme activities in flag leaf. At 15 d after treatment (DAT), net photosynthetic rate under WL was only 3.7 and 8.9 μmol(CO 2 ) m -2 s -1 in Yumai 34 and Yangmai 9, respectively, which was much lower than in the control. Ratios of variable to maximum and variable to initial fluorescence, actual photosynthetic efficiency, and photochemical quenching were much lower, while initial fluorescence and non-photochemical quenching were much higher under WL than in control, indicating damage to photosystem 2. WL decreased activities of superoxide dismutase and catalase in both cultivars, and activity of peroxidase (POD) in Yumai 34, while POD activity in Yangmai 9 was mostly increased. The obvious decrease in the amount of post-anthesis accumulated dry matter, which was redistributed to grains, also contributed to the grain yield loss under WL.
Breeding durable resistance to pathogens and pests is a major task for modern plant breeders and pyramiding different resistance genes into a genotype is one way of achieving this. Three powdery mildew resistance gene combinations, Pm2+Pm4a, Pm2+Pm21, Pm4a+Pm21 were successfully integrated into an elite wheat cultivar ‘Yang047′. Double homozygotes were selected from a small F2 population with the help of molecular markers. As the parents were near‐isogenic lines (NILs) of ‘Yang158′, the progenies showed good uniformity in morphological and other non‐resistance agronomic traits. The present work illustrates the bright prospects for the utilization of molecular markers in breeding for host resistance.
Changes of sucrose metabolism in the subtending leaf to cotton (Gossypium hirsutum L.) boll at different fruiting branch nodes (FBN) were investigated. Two cotton cultivars, Kemian 1 and Sumian 15, were grown in the field at three planting dates in 2009 and 2011. Cotton planted on different dates but experiencing similar climatic factors flowered on the same date and had similar boll opening dates, but had different FBN. In the present study, boll weight and carbohydrate content were significantly affected by both flowering date (FD) and FBN. However, only cystolic fructose-1,6-bisphosphatase (cy-FBPase) and sucrose-phosphate synthase (SPS) activities of the sucrosemetabolizing enzymes were influenced significantly by FBN, and the influence of FBN was lower with delayed FD. In general, effects of FBN on boll weight and sucrose metabolism in the subtending leaf were higher at the optimal FD (13 August) than those at later FD (9 September 2009 and 2 September 2011), and total fruiting branches were used to characterize cotton physiological age in the current study. Sucrose transport capacity (Tn) and SPS in the subtending leaf had significantly positive correlations with boll weight at 17-24 days post anthesis (DPA), a crucial period when boll weight was significantly affected. In addition, higher SPS activity was favourable for sucrose export and boll weight during boll development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.