Since hydroxyapatite has excellent biocompatibility and bone bonding ability, porous hydroxyapatite ceramics have been intensively studied. However, porous hydroxyapatite bodies are mechanically weak and brittle, which makes shaping and implantation difficult. One way to solve this problem is to introduce a strong porous network onto which hydroxyapatite coating is applied. In this study, porous zirconia and alumina-added zirconia ceramics were prepared by ceramic slurry infiltration of expanded polystyrene bead compacts, followed by firing at 1500 o C. Then a slurry of hydroxyapatite-borosilicate glass mixed powder was used to coat the porous ceramics, followed by firing at 1200 o C. The porous structures without the coating had high porosities of 51% to 69%, a high pore interconnectivity, and sufficiently large pore window sizes (300μm-500μm). The porous ceramics had compressive strengths of 5.3~36.8MPa and Young's moduli of 0.30~2.25GPa, favorably comparable to the mechanical properties of cancellous bones. In addition, porous hydroxyapatite surface was formed on the top of the composite coating, whereas a borosilicate glass layer was found on the interface. Thus, porous zirconia-based ceramics were modified with a bioactive composite coating for biomedical applications.
Strong and tough, macroporous alumina/zirconia composites are superior to alumina scaffolds but still biologically inert to bone tissue, leading to poor tissue ingrowth and osteointegration. One way to solve this problem is applying a bioactive coating onto the pore walls of the macroporous composites. In this study, macroporous alumina/zirconia (20vol%) composites (scaffolds) were prepared by a vacuum infiltration method involving the use of strained (10%) compacts of the expanded polystyrene (EPS) beads (typically 1-2.8 mm in diameter). A bioactive glass (58S33C) coating (~ 20 μm) was applied on the pore walls of the macroporous composites by slurry dip coating and sintering at 1200 oC for 1 hour. A top or outer bioactive glass (58S33C) thin layer (< 10 μm) was further applied by sol dip coating and sintering at a low temperature (< 800 °C). The bioactive glass-coated macroporous alumina/zirconia composites had well interconnected pores, relatively large pore sizes (1-2 mm), medium porosities (60-66%), high compressive strengths (7.52 – 5.42 MPa), and high bioactivity (with an apatite layer formed within 24 hours in the simulated body fluid). The combination of the strong and ultrafine (if not nano-structured) macroporous scaffolds with the multiple or graded bioactive coatings represented a new generation of bone substitutes or permanent scaffolds for bone tissue regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.