Techniques are being developed to image viscoelastic features of soft tissues from time-varying strain. A compress-hold-release stress stimulus commonly used in creep-recovery measurements is applied to samples to form images of elastic strain and strain retardance times. While the intended application is diagnostic breast imaging, results in gelatin hydrogels are presented to demonstrate the techniques. The spatiotemporal behaviour of gelatin is described by linear viscoelastic theory formulated for polymeric solids. Measured creep responses of polymers are frequently modelled as sums of exponentials whose time constants describe the delay or retardation of the full strain response. We found the spectrum of retardation times τ to be continuous and bimodal, where the amplitude at each τ represents the relative number of molecular bonds with a given strength and conformation. Such spectra indicate that the molecular weight of the polymer fibres between bonding points is large. Imaging parameters are found by summarizing these complex spectral distributions at each location in the medium with a second-order Voigt rheological model. This simplification reduces the dimensionality of the data for selecting imaging parameters while preserving essential information on how the creeping deformation describes fluid flow and collagen matrix restructuring in the medium. The focus of this paper is on imaging parameter estimation from ultrasonic echo data, and how jitter from hand-held force applicators used for clinical applications propagate through the imaging chain to generate image noise.
Abstract. Ultrasound cavitation of microbubble contrast agents has a potential for therapeutic applications, including sonothrombolysis in acute ischemic stroke. For safety, efficacy, and reproducibility of treatment, it is critical to evaluate the cavitation state (e.g. stable versus inertial forms of cavitation) and intensity in and around a treatment area. Acoustic Passive Cavitation Detectors (PCDs) have been used but do not provide spatial information. This paper presents a prototype of a 2D cavitation imager capable of producing images of the dominant cavitation state and intensity in a region of interest at a frame rate of 0.6Hz. The system is based on a modified ultrasound scanner (iE33, Philips) with a sector imaging probe (S5-1). Cavitation imaging is based on the spectral analysis of the acoustic signal radiated by the cavitating microbubbles: ultraharmonics of the excitation frequency indicate stable cavitation, while noise bands indicate inertial cavitation. The system demonstrates the capability to robustly identify stable and inertial cavitation thresholds of Definity microbubbles (Lantheus) in a vessel phantom through 3 ex-vivo human temporal bones, as well as to spatially map cavitation activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.