[1] We used time-lapse imagery, seismic and audio recordings, iceberg and glacier velocities, ocean wave measurements, and simple theoretical considerations to investigate the interactions between Jakobshavn Isbrae and its proglacial ice mélange. The mélange behaves as a weak, granular ice shelf whose rheology varies seasonally. Sea ice growth in winter stiffens the mélange matrix by binding iceberg clasts together, ultimately preventing the calving of full-glacier-thickness icebergs (the dominant style of calving) and enabling a several kilometer terminus advance. Each summer the mélange weakens and the terminus retreats. The mélange remains strong enough, however, to be largely unaffected by ocean currents (except during calving events) and to influence the timing and sequence of calving events. Furthermore, motion of the mélange is highly episodic: between calving events, including the entire winter, it is pushed down fjord by the advancing terminus (at $40 m d À1 ), whereas during calving events it can move in excess of 50 Â 10 3 m d À1 for more than 10 min. By influencing the timing of calving events, the mélange contributes to the glacier's several kilometer seasonal advance and retreat; the associated geometric changes of the terminus area affect glacier flow. Furthermore, a force balance analysis shows that large-scale calving is only possible from a terminus that is near floatation, especially in the presence of a resistive ice mélange. The net annual retreat of the glacier is therefore limited by its proximity to floatation, potentially providing a physical mechanism for a previously described near-floatation criterion for calving.
[1] The recent loss of Jakobshavn Isbrae's extensive floating ice tongue has been accompanied by a change in near terminus behavior. Calving currently occurs primarily in summer from a grounded terminus, involves the detachment and overturning of several icebergs within 30-60 min, and produces long-lasting and far-reaching ocean waves and seismic signals, including ''glacial earthquakes''. Calving also increases near-terminus glacier velocities by $3% but does not cause episodic rapid glacier slip, thereby contradicting the originally proposed glacial earthquake mechanism. We propose that the earthquakes are instead caused by icebergs scraping the fjord bottom during calving. Citation: Amundson, J. M., M. Truffer, M. P. Lüthi, M. Fahnestock, M. West, and R. J. Motyka (2008), Glacier, fjord, and seismic response to recent large calving events, Jakobshavn Isbrae, Greenland, Geophys. Res. Lett., 35, L22501,
Ice loss from the world’s glaciers and ice sheets contributes to sea level rise, influences ocean circulation, and affects ecosystem productivity. Ongoing changes in glaciers and ice sheets are driven by submarine melting and iceberg calving from tidewater glacier margins. However, predictions of glacier change largely rest on unconstrained theory for submarine melting. Here, we use repeat multibeam sonar surveys to image a subsurface tidewater glacier face and document a time-variable, three-dimensional geometry linked to melting and calving patterns. Submarine melt rates are high across the entire ice face over both seasons surveyed and increase from spring to summer. The observed melt rates are up to two orders of magnitude greater than predicted by theory, challenging current simulations of ice loss from tidewater glaciers.
Submarine melting has been implicated as a driver of glacier retreat and sea level rise, but to date melting has been difficult to observe and quantify. As a result, melt rates have been estimated from parameterizations that are largely unconstrained by observations, particularly at the near‐vertical termini of tidewater glaciers. With standard coefficients, these melt parameterizations predict that ambient melting (the melt away from subglacial discharge outlets) is negligible compared to discharge‐driven melting for typical tidewater glaciers. Here, we present new data from LeConte Glacier, Alaska, that challenges this paradigm. Using autonomous kayaks, we observe ambient meltwater intrusions that are ubiquitous within 400 m of the terminus, and we provide the first characterization of their properties, structure, and distribution. Our results suggest that ambient melt rates are substantially higher (×100) than standard theory predicts and that ambient melting is a significant part of the total submarine melt flux. We explore modifications to the prevalent melt parameterization to provide a path forward for improved modeling of ocean‐glacier interactions.
Water that pressurizes the base of glaciers and ice sheets enhances glacier velocities and modulates glacial erosion. Predicting ice flow and erosion therefore requires knowledge of subglacial channel evolution, which remains observationally limited. Here we demonstrate that detailed analysis of seismic ground motion caused by subglacial water flow at Mendenhall Glacier (Alaska) allows for continuous measurement of daily to subseasonal changes in basal water pressure gradient, channel size, and sediment transport. We observe intermittent subglacial water pressure gradient changes during the melt season, at odds with common assumptions of slowly varying, low‐pressure channels. These observations indicate that changes in channel size do not keep pace with changes in discharge. This behavior strongly affects glacier dynamics and subglacial channel erosion at Mendenhall Glacier, where episodic periods of high water pressure gradients enhance glacier surface velocity and channel sediment transport by up to 30% and 50%, respectively. We expect the application of this framework to future seismic observations acquired at glaciers worldwide to improve our understanding of subglacial processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.