A quantum description adapted to scrutinize chemical reaction mechanisms obtains by implementing an electronuclear separation via quantum numbers method; truly diabatic base states obtain that sustain quantum states expressed as linear superpositions. A proto-type bond breaking/formation case: H + 2 ⇔ H (1s) + H + test possibilities via mathematical modeling. Asymptotic states (|H ⊗ |H + ) and (|H + ⊗ |H ) and basis states for quantized electromagnetic radiation complete the model; Feshbach-resonance-like quantum states obtain that play pivotal roles gating association/dissociation processes. A fixed grid of floating Gaussian orbitals permits actual computations compatible with this method. The information therefrom gleaned is used to construct model Hamiltonians easily adaptable to second quantization formalisms. Theoretical developments and non-routine computations results can directly be related to experiment.
CASPT2 level of theory and aug-cc-pV6Z atomic basis set for hydrogen and 6 base states is sufficient to accurately reproduce the historical calculations of Kolos-Wolniewicz for H 2 1 R þ g potential energy curve. We found that for H þ H process experimental and adiabatic theory results are contradictory. By analyzing different levels of semiclassic theory, we identify the nature of the failure. We propose an approximate scheme that may bridge semiclassic to QM model.
The electronic mechanisms of a model hydride transfer reaction are theoretically studied with ab inito RHF and UHF SCF MO procedures at the 4-31G basis set level and analytical gradient methods. The model system describes the reduction of cyclopropenyl cation to cyclopropene by the oxidation of lithium hydride to lithium cation. The molecular fragments corresponding to the asymptotic reactive channels characterizing the stepwise mechanisms currently discussed in the literature have been characterized. The binding energy between the fragments is estimated within a simple electrostatic approximate scheme. The results show that a hydride-ion mechanism is a likely pathway for this particular system. The system is thereafter thoroughly studied from the supermolecule approach. Reaction paths for the ground and first triplet electronic states have been calculated. The hypersurface is explored from a geometrical disposition of the reactants that mimics the one found in several dehydrogenases (perpendicular configuration). A hydride ion is found to be the particle transferred on the unconstrained as well as the constrained reaction pathways in the ground electronic state. In the triplet state (perpendicular configuration) the mechanism is stepwise: electron transfer followed by a hydrogen atom transfer. It has been noticed that the perpendicular geometrical disposition of the reactants plays an important role by polarizing the susceptible cyclopropene C–H bond in the sense of increasing the electronic density at the hydrogen nucleus. This provides a clue to rationalize several dehydrogenase’s active site structure and mechanism. The reactant molecular complex found in the inverted potential energy curves, namely the LiH---Cp+ association has an electronic distribution which can be described as a hydride ion cementing two electron deficient centers corresponding to the cyclopropenyl and the lithium cations. Direct CI calculations confirm the overall picture obtained above.
The electron density and the molecular electrostatic potential of the 0-carbolines are studied using ab initio s T O 3 G wave functions. The analysis was done from the point of view of a previous model built with monoamine oxidase substrates and irreversible inhibitors. The results confirm the usefulness of the model and make it possible to propose new precision to the molecular electrostatic potential patterns needed to have monoamine oxidase inhibitory activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.