Low land productivity due to soil erosion is one of the biggest challenges to improving the performance of the agriculture sector in Uganda. Several soil erosion control technologies are recommended for use by farmers, but there have been claims that adoption of such technologies is still low. Therefore, this study aimed at determining factors that influence the incidence and intensity of technology adoption. A survey was conducted in Bukwo and Kween districts, which are located on the slopes of Mt. Elgon in eastern Uganda. The collected data was analysed using descriptive statistics and double hurdle models. The findings revealed that on average, the incidence of technology adoption is appreciably high and the intensity of use is moderately high. Nonetheless, a considerable percentage of farmers are using the technologies on small scale. We note that technology adoption can be further increased by increases in: access to extension services, amount of land owned, and diversity of farm tools owned by farmers. However, some farmers are not well endowed with regard to the agricultural assets and services alluded to. Thus, we recommend support to farmers by both Government and non-Government actors in line with the factors identified as potential catalysts of adoption of soil erosion control technologies.
In African small-scale agriculture, sustainable land and water management (SLWM) is key to improving food production while coping with climate change. However, the rate of SLWM adoption remains low, suggesting a gap between generalized SLWM advantages for rural development across the literature, and the existence of context-dependent barriers to its effective implementation. Uganda is an example of this paradox: the SLWM adoption rate is low despite favorable ecological conditions for agriculture development and a large rural population. A systemic understanding of the barriers hindering the adoption of SLWM is therefore crucial to developing coherent policy interventions and enabling effective funding strategies. Here, we propose a cross-scale archetype approach to identify and link barriers to SLWM adoption in Uganda. We performed 80 interviews across the country to build cognitive archetypes, harvesting stakeholders' perceptions of different types of barriers. We complemented this bottom-up perspective with a spatial archetype analysis to contextualize these results across different social-ecological regions. We found poverty trap, overpopulation, risk aversion, remoteness, and post-conflict patriarchal systems as cognitive archetypes that synthesize the different dynamics of barriers to SLWM adoption in Uganda. Our results reveal both specific and cross-cutting barriers. Ineffective extension services emerges as a ubiquitous barrier, whereas gender inequality is a priority barrier for large supported farms and farms in drier lowlands in northern Uganda. The combination of cognitive and spatial archetypes proposed here can help to overcome ineffective "one-size-fits-all" solutions and support context-specific policy plans to scale up SLWM, rationing resources to support sustainable intensification of agriculture.
In Uganda, upgrading smallholder agriculture is a necessary step to achieve the interlinked sustainable development goals of hunger eradication, poverty reduction and land degradation neutrality. However, targeting the right restoration practices and estimate their cost-benefit at the national scale is difficult given the highly contextual nature of restoration practices and the diversity of small-scale interventions to be adopted. By analysing the context-specific outcomes of 82 successful case studies on different Sustainable Land and Water Management (SLWM) in Uganda, we estimated that out-scaling of existing successful practices to 75% of agricultural land would require a one-time investment of US$ 4.4 billion from smallholders. Our results show that, besides the many social and environmental benefit commonly associated to SLWM, a wide outscale of SLWM could generate US$ 4.7 billion every year, once the practices are fully operational. Our context-specific estimates highlight the profitability of investing in smallholder farming to achieve the SDGs in Uganda, with geographical differences coming from specific social-ecological conditions. This study can guide sustainable intensification development by targeting the most suitable SLWM practices and plan for adequate financial support from government, investors and international development aids to smallholder farming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.