Untrained Thoroughbred horses (6 mares and 6 geldings; 11 yr [SE 1] and 565 kg [SE 11]) were used to evaluate antioxidant gene expression and enzyme activity in blood and skeletal muscle in response to prolonged exercise after receiving 2 levels of dietary selenium for 36 d: 0.1 (CON; = 6) or 0.3 mg/kg DM (SEL; = 6). Horses were individually fed 1.6% BW coastal bermudagrass hay, 0.4% BW whole oats, and a mineral/vitamin premix containing no Se. Sodium selenite was added to achieve either 0.1 or 0.3 mg Se/kg DM in the total diet. On d 35, horses underwent 2 h of submaximal exercise in a free-stall exerciser. Blood samples were obtained before (d 0) and after 34 d of Se supplementation and on d 35 to 36 immediately after exercise and at 6 and 24 h after exercise. Biopsies of the middle gluteal muscle were obtained on d 0, before exercise on d 34, and at 6 and 24 h after exercise. Supplementation with Se above the NRC requirement (SEL) increased serum Se ( = 0.011) and muscle thioredoxin reductase (TrxR) activity ( = 0.051) but had no effect on glutathione peroxidase (GPx) activity in plasma, red blood cell (RBC) lysate, or muscle in horses at rest. Serum creatine kinase activity increased ( < 0.0001) in response to prolonged exercise but was not affected by dietary treatment. Serum lipid hydroperoxides were affected by treatment ( = 0.052) and were higher ( = 0.012) in horses receiving CON than SEL immediately following exercise. Muscle expression of was unchanged at 6 h but increased ( = 0.005) 2.8-fold 24 h after exercise, whereas muscle TrxR activity remained unchanged. Glutathione peroxidase activity increased in plasma (P < 0.0001) and decreased in RBC lysate ( = 0.010) after prolonged exercise. A Se treatment × time interaction was observed for RBC GPx activity (P = 0.048). Muscle and expression and GPx activity did not change during the 24-h period after exercise. Level of dietary Se had no overall effect on expression of , , , , , , or in muscle following exercise. The impact of prolonged exercise on the activities of antioxidant enzymes varied. Furthermore, changes in enzyme activity did not necessarily align with enzyme gene expression following exercise. A higher level of Se intake elevated Se status of untrained horses, increased GPx activity, and lessened lipid peroxidation following exercise, suggesting that Se may be beneficial for mitigating oxidative muscle damage and aiding in postexercise recovery.
Rhizoma peanut (RP, Arachis glabrata) hay has the potential to meet horses’ crude protein requirements with less nitrogen excretion than other legumes. This study aimed to evaluate nutrient intake, apparent digestibility, and nitrogen balance of RP ‘Florigraze’ hay compared to alfalfa (ALF, Medicago sativa L. ‘Legendary XHD’) and bermudagrass (BG, Cynodon dactylon L. ‘Coastal’) hays when fed to maintenance horses at 2% BW/d on a dry matter (DM) basis. We hypothesized that nutrient intake would be comparable between the legume hays and lesser for BG, and that RP would result in reduced nitrogen excretion compared to alfalfa. Six mature Quarter Horse geldings (593 ± 40 kg; mean ± SD) were randomly assigned to one of the hays in a replicated 3 x 3 Latin square with 21-d periods. A 14-d adaptation phase was followed by a 3-d total fecal and urine collection. Days 18 to 21 were used for a companion study. Intake of nutrients is reported on a DM basis. Digestible energy (DE) intakes from ALF (29.91 Mcal/d) and RP (29.37 Mcal/d) were greater (P < 0.0001) than BG (20.78 Mcal/d). Crude protein (CP) intake was greater (P < 0.0001) for ALF (2.5 kg/d), followed by RP (1.9 kg/d), and BG (1.5 kg/d). All hays exceeded maintenance requirements for DE, CP, Ca, and P. Apparent digestibility of DM and CP were greatest (P < 0.0001) for ALF (69 and 84%), intermediate for RP (61 and 72%), and least for BG (46 and 64%). Apparent digestibility of neutral detergent fiber did not differ (P = 0.2228) among hays, while digestibility of acid detergent fiber (P = 0.0054) was least for RP but similar for ALF and BG. Water intake (kg/d) for ALF (57) was greater (P=0.0068) than RP (45) and BG (41). Greater (P = 0.0271) water retention (kg/d) was observed for ALF (13.5), followed by RP (10.8) and BG (7.5). There was a difference in nitrogen excretion, with greatest urinary nitrogen excretion for ALF (P < 0.0001) and greatest fecal nitrogen excretion for BG (P = 0.0001). Total nitrogen excretion was greater (P < 0.0001) for ALF (278 g/d), followed by RP (211 g/d), and BG (179 g/d). Nitrogen retention was greater (P = 0.0005) for ALF when represented as g/d (ALF: 129, RP: 86, and BG: 57 g/d), but similar (P = 0.0377) to RP when presented as percent of nitrogen intake (ALF: 32, RP: 29, and BG: 24%). Results indicate that rhizoma peanut hay is a suitable legume for horses by meeting DE and CP requirements and having a significant reduction in nitrogen compared to alfalfa.
Bermudagrass (Cynodon dactylon) and other warm-season grasses are known for their increased fiber concentrations and reduced digestibility relative to cool-season grasses and legumes. This study investigated the digestive characteristics and passage kinetics of three maturities of Coastal bermudagrass hay. A 5 × 5 Latin square design experiment was used to compare the digestion of five hays: alfalfa (Medicago sativa, ALF), orchardgrass (Dactylis glomerata, ORCH), and Coastal bermudagrass harvested at 4 (CB 4), 6 (CB 6), and 8 weeks of regrowth (CB 8). Horses were fed cobalt-ethylenediaminetetraacetic acid (Co-EDTA) and ytterbium (Yb) labeled neutral detergent fiber (NDF) before an 84-h total fecal collection to determine digesta retention time. Dry matter digestibility was greatest for ALF (62.1%) and least for CB 6 (36.0%) and CB 8 diets (36.8%, SEM = 2.1; p < 0.05). Mean retention time was longer (p < 0.05) for Coastal bermudagrass (particulate 31.3 h, liquid 25.3 h) compared with ORCH and ALF (28.0 h, SEM = 0.88 h; 20.7 h, SEM = 0.70 h). Further evaluation of digesta passage kinetics through mathematical modeling indicated ALF had distinct parameters compared to the other diets. Differences in digestive variables between forage types are likely a consequence of fiber physiochemical properties, warranting further investigation on forage fiber and digestive health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.