The systemic imidacloprid is one of the most used insecticides in the world for field and horticultural crops. This neurotoxicant is often used as seed-dressing, especially for maize, sunflower, and rape. Using a LC/MS/MS technique (LOQ = 1 microg/kg and LOD = 0.1 microg/kg), the presence of imidacloprid has been measured in maize from field samples at the time of pollen shed, from less than 0.1 microg/kg up to 33.6 microg/kg. Numerous random samples were collected throughout France from 2000 to 2003. The average levels of imidacloprid measured are 4.1 microg/kg in stems and leaves, 6.6 microg/kg in male flowers (panicles), and 2.1 microg/kg in pollen. These values are similar to those found previously in sunflower and rape. These results permit evaluation of the risk to honeybees by using the PEC/PNEC ratios (probable exposition concentrations/predicted no effect concentration). PEC/PNEC risk ratios were determined and ranged between 500 and 600 for honeybees foraging on maize treated with imidacloprid by seed dressing. Such a high risk factor can be related to one of the main causes of honeybee colony losses.
Following evidence for the intoxication of bees, the systemic insecticide imidacloprid was suspected from the mid nineties of having harmful effects. Recently, some studies have demonstrated that imidacloprid is toxic for the bees at sub-lethal doses. These doses are evaluated in the range between 1 and 20 μg kg -1 , or less. It appeared thus necessary to study the fate of imidacloprid in the environment at such low levels. Thus, we developed methods for the determination of low amounts, in the μg kg -1 range, of the insecticide imidacloprid in soils, plants and pollens using high pressure liquid chromatography -tandem mass spectrometry (LC/APCI/MS/MS). The extraction and separation methods were performed according to quality assurance criteria, good laboratory practices and the European Community's criteria applicable to banned substances (directive 96/23 EC). The linear concentration range of application was 1-50 μg kg -1 of imidacloprid, with a relative standard deviation of 2.9% at 1 μg kg -1 . The limit of detection and quantification are respectively LOD = 0.1 μg kg -1 and LOQ = 1 μg kg -1 and are suited to the sub-lethal dose range. This technique allows the unambiguous identification and quantification of imidacloprid. The results show the remanence of the insecticide in soils, its ascent into plants during flowering and its bioavailability in pollens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.