In this paper we describe in detail the implementation and main properties of a new inversion code for the polarized radiative transfer equation (VFISV: Very Fast Inversion of the Stokes Vector). VFISV will routinely analyze pipeline data from the Helioseismic and Magnetic Imager (HMI) on-board of the Solar Dynamics Observatory (SDO). It will provide full-disk maps (4096×4096 pixels) of the magnetic field vector on the Solar Photosphere every ten minutes. For this reason VFISV is optimized to achieve an inversion speed that will allow it to invert sixteen million pixels every ten minutes with a modest number (approx. 50) 268 J.M. Borrero et al.of CPUs. Here we focus on describing a number of important details, simplifications and tweaks that have allowed us to significantly speed up the inversion process. We also give details on tests performed with data from the spectropolarimeter on-board of the Hinode spacecraft.
In this review we give an overview about the current state-of-knowledge of the magnetic field in sunspots from an observational point of view. We start by offering a brief description of tools that are most commonly employed to infer the magnetic field in the solar atmosphere with emphasis in the photosphere of sunspots. We then address separately the global and local magnetic structure of sunspots, focusing on the implications of the current observations for the different sunspots models, energy transport mechanisms, extrapolations of the magnetic field towards the corona, and other issues.Electronic Supplementary MaterialSupplementary material is available for this article at 10.12942/lrsp-2011-4.
Abstract. We investigate the fine structure of the sunspot penumbra by means of a model that allows for a flux tube in horizontal pressure balance with the magnetic background atmosphere in which it is embedded. We apply this model to spectropolarimetric observations of two neutral iron lines at 1.56 µm and invert several radial cuts in the penumbra of the same sunspot at two different heliocentric angles. In the inner part of the penumbra we find hot flux tubes that are somewhat inclined to the horizontal. They become gradually more horizontal and cooler with increasing radial distance. This is accompanied by an increase in the velocity of the plasma and a decrease of the gas pressure difference between flux tube and the background component. At large radial distances the flow speed exceeds the critical speed and evidence is found for the formation of a shock front. These results are in good agreement with simulations of the penumbral fine structure and provide strong support for the siphon flow as the physical mechanism driving the Evershed flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.