A novel electro-optic silicon-based modulator with a bandwidth of 78GHz, a drive voltage amplitude of 1V and a length of only 80 microm is proposed. Such record data allow 100Gbit/s transmission and can be achieved by exploiting a combination of several physical effects. First, we rely on the fast and strong nonlinearities of polymers infiltrated into silicon, rather than on the slower free-carrier effect in silicon. Second, we use a Mach-Zehnder interferometer with slotted slow-light waveguides for minimizing the modulator length, but nonetheless providing a long interaction time for modulation field and optical mode. Third, with this short modulator length we avoid bandwidth limitations by RC time constants. The slow-light waveguides are based on a photonic crystal. A polymer-filled narrow slot in the waveguide center forms the interaction region, where both the optical mode and the microwave modulation field are strongly confined to. The waveguides are designed to have a low optical group velocity and negligible dispersion over a 1THz bandwidth. With an adiabatic taper we significantly enhance the coupling to the slow light mode. The feasibility of broadband slow-light transmission and efficient taper coupling has been previously demonstrated by us with calculations and microwave model experiments, where fabrication-induced disorder of the photonic crystal was taken into account.
Abstract-CMOS-compatible silicon photonics combined with covers of (2) or -nonlinear organic material allows electrooptic modulators and all-optical wavelength converters for data rates of 100 Gbit/s and beyond. The devices are not impaired by free carriers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.