Important noteTo cite this publication, please use the final published version (if applicable). Please check the document version above.
CopyrightOther than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Takedown policyPlease contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.
AbstractThis work introduces a new self-healing superhydrophobic coating based on dual actions by the corrosion inhibitor benzotriazole (BTA) and an epoxy-based shape memory polymer (SMP). Damage to the surface morphology (e.g., crushed areas and scratches) and the corresponding superhydrophobicity is shown to be rapidly healed through a simple heat treatment at 60 °C for 20 min. Electrochemical impedance spectroscopy (EIS) and scanning electrochemical microscopy (SECM) were used to study the anti-corrosion performance of the scratched and the healed superhydrophobic coatings immersed in a 3.5 wt% NaCl solution. The results revealed that the anti-corrosion performance of the scratched coatings was improved upon the incorporation of BTA. After the heat treatment, the scratched superhydrophobic coatings exhibited excellent recovery of the anti-corrosion performance, which is attributed to the closure of the scratch by the shape memory effect and to the improved inhibition efficiency of BTA. Furthermore, we found that the pre-existing corrosion product inside the coating scratch could hinder the scratch closure by the shape memory effect and reduce the coating adhesion in the scratched region. However, the addition of BTA effectively suppressed the formation of corrosion product and enhanced the self-healing and adhesion performance under this condition. Importantly, we also demonstrated that the coating can be autonomously healed within 1 h in an outdoor environment using sunlight as the heat source.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.