Lithium lanthanum titanate perovskites Li
x
La1−x
TiO3 (LLTO) are promising solid-electrolytes for Li-ion batteries. We studied, in the Density-Functional-Theory framework, the thermodynamic stability and the electronic and magnetic properties of LLTO, as bulk materials and as thin slabs with (001) exposed surfaces. Results show that LaTiO3 (LTO) exhibits semiconductor behavior and G-type antiferromagnetic order (AFMG), whereas the TiO2-terminated LTO slab is a semiconductor with ferromagnetic (FM) order. Contrasting, the LTO slab exposing a LaO-terminated surface is a conductor with AFMG ordered Ti cations' magnetic moments (MMs), but at the surface there are some FM ordered MMs (La atoms). LLTO bulk electrolyte is a semiconductor (x = 0.25) or insulator (x = 0.50). The LLTO slab is a FM (non-magnetic) conductor (TiO2 (LiO)-terminated surface) or a FM semiconductor (LaO-terminated). Besides, the stability of the LLTO bulk and slabs structures was analyzed, as well as the slabs’ preferences for LiO, LaO or TiO2 ends.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.