An orthotropic polymeric foam with transverse isotropy (Divinycell H250) used in composite sandwich structures was characterized at various strain rates. Uniaxial experiments were conducted along principal material axes as well as along off-axis directions under tension, compression, and shear to determine engineering constants, such as Young's and shear moduli. Uniaxial strain experiments were conducted to determine mathematical stiffness constants, i. e., C ij . An optimum specimen aspect ratio for these tests was selected by means of finite element analysis. Quasi-static and intermediate strain rate tests were conducted in a servo-hydraulic testing machine. High strain rate tests were conducted using a split Hopkinson Pressure Bar system built for the purpose using polymeric (polycarbonate) bars. The polycarbonate material has an impedance that is closer to that of foam than metals and results in lower noise to signal ratios and longer loading pulses. It was determined by analysis and verified experimentally that the loading pulses applied, propagated along the polycarbonate rods at nearly constant phase velocity with very low attenuation and dispersion. Material properties of the foam were obtained at three strain rates, quasi-static (10 −4 s −1 ), intermediate (1 s −1 ), and high (10 3 s −1 ) strain rates. A simple model proposed for the Young's modulus of the foam was in very good agreement with the present and published experimental results.
This study was conducted to show the influence of upward velocity in the inner column and downward velocity in the outer column of the coaxial cylinder-type flotation column on the solids removal efficiency, solids concentration in the treated water, and so on. The SIMPLE (Semi-Implicit Method for Pressure Linked Equation) solution was applied to the coaxial flotation column to simulate the velocity vectors of the elements of water flowing in the column. The effects of solids loading and residence time in the agglomerate separation zone on the solids removal efficiency were also tested. In the pilot scale coaxial DAF column experiments with solids concentration of 1,000-2,000 mg of SS per liter and solids loading less than 350 kg/m2/day, approximately 90% of the solids removal efficiencies were obtained using the upward velocity of up to 110 cm/min in the contact zone of the inner column and the downward velocity of up to 30 cm/min in the outer column. In the simulation, similar results were observed as in the experiments. The solids loading in the excess of 350 kg/m2/day caused the instability of the sludge float layer and aggravated the quality of the treated water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.