In the present paper, a lab-made electromagnetic applicator for magnetic hyperthermia experiments is described, fabricated and tested. The proposed device is able to measure the specific absorption rate (SAR) of nanoparticle samples at different magnetic field intensities and frequencies. Based on a variable parallel LCC resonant circuit fed by a linear power amplifier, the electromagnetic applicator is optimized to generate a controllable and homogeneous AC magnetic field in a 3.5 cm3 cylindrical volume, in a wide frequency range of 149–1030 kHz with high field intensities (up to 35 kA m−1 at low frequencies and up to 22 kA m−1 at high frequencies). In addition, a lab-made AC magnetometer is integrated in the electromagnetic applicator. The AC magnetometer is fully compensated to provide accurate measurements of the dynamic hysteresis cycle for nanoparticle powders or dispersions. From these dynamic hysteresis loops the SAR of the nanoparticle samples can be directly obtained. To show the capabilities of the proposed set-up, the AC hysteresis loops of two different magnetite nanoparticle samples with different sizes have been measured for various field intensities and frequencies. To our knowledge, no other work reports an electromagnetic applicator system with integrated AC magnetometer providing such characteristics in terms of frequency and intensity.
Magnetic nanoparticles (NPs) are intensively studied for their potential use for magnetic hyperthermia, a treatment that has passed a phase II clinical trial against severe brain cancer (glioblastoma) at the end of 2011. Their heating power, characterized by the 'specific absorption rate (SAR)', is often considered temperature independent in the literature, mainly because of the difficulties that arise from the measurement methodology. Using a dynamic magnetometer presented in a recent paper, we measure here the thermal dependence of SAR for superparamagnetic iron oxide (maghemite) NPs of four different size-ranges corresponding to mean diameters around 12 nm, 14 nm, 15 nm and 16 nm. The article reports a parametrical study extending from 10 to 60 °C in temperature, from 75 to 1031 kHz in frequency, and from 2 to 24 kA m(-1) in magnetic field strength. It was observed that SAR values of smaller NPs decrease with temperature whereas for the larger sample (16 nm) SAR values increase with temperature. The measured variation of SAR with temperature is frequency dependent. This behaviour is fully explained within the scope of linear response theory based on Néel and Brown relaxation processes, using independent magnetic measurements of the specific magnetization and the magnetic anisotropy constant. A good quantitative agreement between experimental values and theoretical values is confirmed in a tri-dimensional space that uses as coordinates the field strength, the frequency and the temperature.
Measurement of specific absorption rate (SAR) of magnetic nanoparticles is crucial to assert their potential for magnetic hyperthermia. To perform this task, calorimetric methods are widely used. However, those methods are not very accurate and are difficult to standardize. In this paper, we present AC magnetometry results performed with a lab-made magnetometer that is able to obtain dynamic hysteresis-loops in the AC magnetic field frequency range from 50 kHz to 1 MHz and intensities up to 24 kA.m-1. In this work, SAR values of maghemite nanoparticles dispersed in water are measured by AC magnetometry. The so obtained values are compared with the SAR measured by calorimetric methods. Both measurements, respectively by calorimetry and magnetometry, are in good agreement. Therefore, the presented AC magnetometer is a suitable way to obtain SAR values of magnetic nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.