A high-statistics sample of charged-current muon neutrino scattering events collected with the MiniBooNE experiment is analyzed to extract the first measurement of the double differential cross section ( d 2 σ dTµd cos θµ ) for charged-current quasielastic (CCQE) scattering on carbon. This result features minimal model dependence and provides the most complete information on this process to date. With the assumption of CCQE scattering, the absolute cross section as a function of neutrino energy (σ[Eν]) and the single differential cross section ( dσ dQ 2 ) are extracted to facilitate comparison with previous measurements. These quantities may be used to characterize an effective axial-vector form factor of the nucleon and to improve the modeling of low-energy neutrino interactions on nuclear targets. The results are relevant for experiments searching for neutrino oscillations.
This paper explores the use of L/E oscillation probability distributions to compare experimental measurements and to evaluate oscillation models. In this case, L is the distance of neutrino travel and E is a measure of the interacting neutrino's energy. While comparisons using allowed and excluded regions for oscillation model parameters are likely the only rigorous method for these comparisons, the L/E distributions are shown to give qualitative information on the agreement of an experiment's data with a simple two-neutrino oscillation model. In more detail, this paper also outlines how the L/E distributions can be best calculated and used for model comparisons. Specifically, the paper presents the L/E data points for the final MiniBooNE data samples and, in the Appendix, explains and corrects the mistaken analysis published by the ICARUS collaboration.
The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of 7.2× 6.1× 7.0 m3. It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV/c to 7 GeV/c. Beam line instrumentation provides accurate momentum measurements and particle identification. The ProtoDUNE-SP detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment, and it incorporates full-size components as designed for that module. This paper describes the beam line, the time projection chamber, the photon detectors, the cosmic-ray tagger, the signal processing and particle reconstruction. It presents the first results on ProtoDUNE-SP's performance, including noise and gain measurements, dE/dx calibration for muons, protons, pions and electrons, drift electron lifetime measurements, and photon detector noise, signal sensitivity and time resolution measurements. The measured values meet or exceed the specifications for the DUNE far detector, in several cases by large margins. ProtoDUNE-SP's successful operation starting in 2018 and its production of large samples of high-quality data demonstrate the effectiveness of the single-phase far detector design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.