that focused on transition and drag predictions of laminar airfoils. The extension of such studies to three-dimensional configurations representative of modern civil aircraft is a further step toward the implementation of natural laminarflow technologies. The present work, therefore, focuses on validating the laminar design of a low-swept wing for business jet applications. In 2015, an experimental campaign was carried out in the European Transonic Windtunnel, and included laminar/turbulent transition measurements with temperature-sensitive paint at Mach and Reynolds numbers typical of cruise flight conditions. Subsequently, fluid dynamics computations were performed on this aircraft geometry either with a Reynolds-averaged Navier-Stokes solver using both Tollmien-Schlichting and crossflow transition criteria, or with a boundary-layer code using either database methods for transition location or exact stability analyses. In this paper, experimental and numerical transition predictions are compared for three representative cases corresponding to different angles of attack. The agreement that is achieved is satisfactory, and extended regions of laminar flow are observed on the wing at cruise lift levels. In these conditions, the drag reduction can account for 10-15% of the aircraft drag.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.