Renowned for its sensitivity to detect the presence of numerous substances, graphene is an excellent chemical sensor. Unfortunately, which general features a dopant must have in order to enter the list of substances detectable by graphene are not exactly known. Here we demonstrate with a simple model calculation implemented in three different ways that one of such features is the symmetry properties of the impurity binding to graphene. In particular, we show that electronic scattering is suppressed when dopants are bound symmetrically to both graphene sub-lattices, giving rise to impurity invisibility. In contrast, dopants that affect the two sublattices asymmetrically are more strongly scattered and therefore the most likely candidates to being chemically sensed by graphene. Furthermore, we demonstrate that impurity invisibility is lifted with the introduction of a symmetry-breaking perturbation such as uniaxial strain. In this case, graphene with sublatticesymmetric dopants will function as efficient strain sensors. We argue that by classifying dopants through their bonding symmetry leads to a more efficient way of identifying suitable components for graphene-based sensors.
Abstract. The indirect exchange interaction is one of the key factors in determining the overall alignment of magnetic impurities embedded in metallic host materials. In this work we examine the range of this interaction in magnetically-doped graphene systems in the presence of armchair edges using a combination of analytical and numerical Green function (GF) approaches. We consider both a semi-infinite sheet of graphene with a single armchair edge, and also quasi-one-dimensional armchair edged graphene nanoribbons (GNRs). While we find signals of the bulk decay rate in semi-infinite graphene and signals of the expected one-dimensional decay rate in GNRs, we also find an unusually rapid decay for certain instances in both, which manifests itself whenever the impurities are located at sites which are a multiple of three atoms from the edge. This decay behavior emerges from both the analytic and numerical calculations, and the result for semi-infinite graphene can be interpreted as an intermediate case between ribbon and bulk systems.Variable range of the RKKY interaction in edged graphene 2
The ease with which the physical properties of graphene can be tuned suggests a wide range of possible applications. Recently, strain engineering of these properties has been of particular interest. Possible spintronic applications of magnetically doped graphene systems have motivated recent theoretical investigations of the so-called Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between localized moments in graphene. In this work a combination of analytic and numerical techniques are used to examine the effects of uniaxial strain on such an interaction. A range of interesting features are uncovered depending on the separation and strain directions. Amplification, suppression, and oscillatory behavior are reported as a function of the strain and mathematically transparent expressions predicting these features are derived. Since a wide range of effects, including overall moment formation and magnetotransport response, are underpinned by such interactions we predict that the ability to manipulate the coupling by applying strain may lead to interesting spintronic applications.
The growing interest in carbon-based spintronics has stimulated a number of recent theoretical studies on the RKKY interaction in graphene, with the aim of determining the most energetically favourable alignments between embedded magnetic moments. The RKKY interaction in undoped graphene decays faster than expected for conventional two-dimensional materials and recent studies suggest that the adsorption configurations favoured by many transition-metal impurities may lead to even shorter ranged decays and possible sign-changing oscillations. Here we show that these features emerge in a mathematically transparent manner when the symmetry of the configurations is included in the calculation. Furthermore, we show that by breaking the symmetry of the graphene lattice, via uniaxial strain, the decay rate, and hence the range, of the RKKY interaction can be significantly altered. Our results suggest that magnetic interactions between adsorbed impurities in graphene can be manipulated by careful strain engineering of such systems.
For low-dimensional metallic structures, such as nanotubes, the exchange coupling between localized magnetic dopants is predicted to decay slowly with separation. The long-range character of this interaction plays a significant role in determining the magnetic order of the system. It has previously been shown that the interaction range depends on the conformation of the magnetic dopants in both graphene and nanotubes. Here we examine the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in carbon nanotubes in the presence of uniaxial strain for a range of different impurity configurations. We show that strain is capable of amplifying or attenuating the RKKY interaction, significantly increasing certain interaction ranges, and acting as a switch: effectively turning on or off the interaction. We argue that uniaxial strain can be employed to significantly manipulate magnetic interactions in carbon nanotubes, allowing an interplay between mechanical and magnetic properties in future spintronic devices. We also examine the dimensional relationship between graphene and nanotubes with regards to the decay rate of the RKKY interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.