Antiferromagnetic antiperovskites, where magnetically active 3d metal cations are placed in the octahedral corners of a perovskite structure, are in the spotlight due to their intertwined magnetic structure and topological properties. Especially their anomalous Hall conductivity, which can be controlled by applied strain and/or electric field, makes them highly attractive in different electronic applications. Here, we present the study and theoretical understanding of a new antiperovskite compound that can offer enormous opportunities in a broad set of applications. Using first-principles calculations, we investigated the structure, lattice dynamics, noncollinear magnetic ordering, and electronic behavior in the Vanadium-based antiperovskite V3AuN. We found an antiperovskite structure centered on N similar to the Mn3AN family as the structural ground state. In such a phase, a Pm 3m ground state was found in contrast to the Cmcm post-antiperovskite layered structure, as in the V3AN, A = Ga, Ge, As, and P. We studied the lattice dynamics and electronic properties, demonstrating its vibrational stability in the cubic structure and a chiral antiferromagnetic noncollinear ordering as a magnetic ground state. Finally, we found that the anomalous Hall conductivity, associated with the topologically features induced by the magnetic symmetry, is σxy = −291 S•cm −1 (σ111 = −504 S•cm −1 ). The latter is the largest reported in the antiferromagnetic antiperovskite family of compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.