BackgroundA recent study using a rat model found significant differences at the time of diabetes onset in the bacterial communities responsible for type 1 diabetes modulation. We hypothesized that type 1 diabetes in humans could also be linked to a specific gut microbiota. Our aim was to quantify and evaluate the difference in the composition of gut microbiota between children with type 1 diabetes and healthy children and to determine the possible relationship of the gut microbiota of children with type 1 diabetes with the glycemic level.MethodsA case-control study was carried out with 16 children with type 1 diabetes and 16 healthy children. The fecal bacteria composition was investigated by polymerase chain reaction-denaturing gradient gel electrophoresis and real-time quantitative polymerase chain reaction.ResultsThe mean similarity index was 47.39% for the healthy children and 37.56% for the children with diabetes, whereas the intergroup similarity index was 26.69%. In the children with diabetes, the bacterial number of Actinobacteria and Firmicutes, and the Firmicutes to Bacteroidetes ratio were all significantly decreased, with the quantity of Bacteroidetes significantly increased with respect to healthy children. At the genus level, we found a significant increase in the number of Clostridium, Bacteroides and Veillonella and a significant decrease in the number of Lactobacillus, Bifidobacterium, Blautia coccoides/Eubacterium rectale group and Prevotella in the children with diabetes. We also found that the number of Bifidobacterium and Lactobacillus, and the Firmicutes to Bacteroidetes ratio correlated negatively and significantly with the plasma glucose level while the quantity of Clostridium correlated positively and significantly with the plasma glucose level in the diabetes group.ConclusionsThis is the first study showing that type 1 diabetes is associated with compositional changes in gut microbiota. The significant differences in the number of Bifidobacterium, Lactobacillus and Clostridium and in the Firmicutes to Bacteroidetes ratio observed between the two groups could be related to the glycemic level in the group with diabetes. Moreover, the quantity of bacteria essential to maintain gut integrity was significantly lower in the children with diabetes than the healthy children. These findings could be useful for developing strategies to control the development of type 1 diabetes by modifying the gut microbiota.
This study showed that red wine consumption can significantly modulate the growth of select gut microbiota in humans, which suggests possible prebiotic benefits associated with the inclusion of red wine polyphenols in the diet. This trial was registered at controlled-trials.com as ISRCTN88720134.
BackgroundSeveral evidences indicate that gut microbiota is involved in the control of host energy metabolism.ObjectiveTo evaluate the differences in the composition of gut microbiota in rat models under different nutritional status and physical activity and to identify their associations with serum leptin and ghrelin levels.MethodsIn a case control study, forty male rats were randomly assigned to one of these four experimental groups: ABA group with food restriction and free access to exercise; control ABA group with food restriction and no access to exercise; exercise group with free access to exercise and feed ad libitum and ad libitum group without access to exercise and feed ad libitum. The fecal bacteria composition was investigated by PCR-denaturing gradient gel electrophoresis and real-time qPCR.ResultsIn restricted eaters, we have found a significant increase in the number of Proteobacteria, Bacteroides, Clostridium, Enterococcus, Prevotella and M. smithii and a significant decrease in the quantities of Actinobacteria, Firmicutes, Bacteroidetes, B. coccoides-E. rectale group, Lactobacillus and Bifidobacterium with respect to unrestricted eaters. Moreover, a significant increase in the number of Lactobacillus, Bifidobacterium and B. coccoides–E. rectale group was observed in exercise group with respect to the rest of groups. We also found a significant positive correlation between the quantity of Bifidobacterium and Lactobacillus and serum leptin levels, and a significant and negative correlation among the number of Clostridium, Bacteroides and Prevotella and serum leptin levels in all experimental groups. Furthermore, serum ghrelin levels were negatively correlated with the quantity of Bifidobacterium, Lactobacillus and B. coccoides–Eubacterium rectale group and positively correlated with the number of Bacteroides and Prevotella.ConclusionsNutritional status and physical activity alter gut microbiota composition affecting the diversity and similarity. This study highlights the associations between gut microbiota and appetite-regulating hormones that may be important in terms of satiety and host metabolism.
Summary Background Elevated blood pressure and glucose, serum cholesterol, and body mass index (BMI) are risk factors for cardiovascular diseases (CVDs); some of these factors also increase the risk of chronic kidney disease (CKD) and diabetes. We estimated CVD, CKD, and diabetes mortality attributable to these four cardio-metabolic risk factors for all countries and regions between 1980 and 2010. Methods We used data on risk factor exposure by country, age group, and sex from pooled analysis of population-based health surveys. Relative risks for cause-specific mortality were obtained from pooling of large prospective studies. We calculated the population attributable fractions (PAF) for each risk factor alone, and for the combination of all risk factors, accounting for multi-causality and for mediation of the effects of BMI by the other three risks. We calculated attributable deaths by multiplying the cause-specific PAFs by the number of disease-specific deaths from the Global Burden of Diseases, Injuries, and Risk Factors 2010 Study. We propagated the uncertainties of all inputs to the final estimates. Findings In 2010, high blood pressure was the leading risk factor for dying from CVDs, CKD, and diabetes in every region, causing over 40% of worldwide deaths from these diseases; high BMI and glucose were each responsible for about 15% of deaths; and cholesterol for 10%. After accounting for multi-causality, 63% (10.8 million deaths; 95% confidence interval 10.1–11.5) of deaths from these diseases were attributable to the combined effect of these four metabolic risk factors, compared with 67% (7.1 million deaths; 6.6–7.6) in 1980. The mortality burden of high BMI and glucose nearly doubled between 1980 and 2010. At the country level, age-standardised death rates attributable to these four risk factors surpassed 925 deaths per 100,000 among men in Belarus, Mongolia, and Kazakhstan, but were below 130 deaths per 100,000 for women and below 200 for men in some high-income countries like Japan, Singapore, South Korea, France, Spain, The Netherlands, Australia, and Canada. Interpretations The salient features of the cardio-metabolic epidemic at the beginning of the twenty-first century are the large role of high blood pressure and an increasing impact of obesity and diabetes. There has been a shift in the mortality burden from high-income to low- and middle-income countries.
Glucokinase (GK) is a glycolytic key enzyme that functions as a glucose sensor in the pancreatic -cell, where it governs glucose-stimulated insulin secretion (GSIS). Heterozygous inactivating mutations in the glucokinase gene (GCK) cause a mild form of diabetes (maturityonset diabetes of the young [MODY]2), and activating mutations have been associated with a mild form of familial hyperinsulinemic hypoglycemia. We describe the first case of severe persistent hyperinsulinemic hypoglycemia due to a "de novo" mutation in GCK (Y214C). A baby girl presented with hypoglycemic seizures since the first postnatal day as well as with inappropriate hyperinsulinemia. Severe hypoglycemia persisted even after treatment with diazoxide and subtotal pancreatectomy, leading to irreversible brain damage. Pancreatic histology revealed abnormally large and hyperfunctional islets. The mutation is located in the putative allosteric activator domain of the protein. Functional studies of purified recombinant glutathionyl Stransferase fusion protein of GK-Y214C showed a sixfold increase in its affinity for glucose, a lowered cooperativity, and increased k cat . The relative activity index of GK-Y214C was 130, and the threshold for GSIS predicted by mathematical modeling was 0.8 mmol/l, compared with 5 mmol/l in the wild-type enzyme. In conclusion, we have identified a de novo GCK activating mutation that causes hyperinsulinemic hypoglycemia of exceptional severity. These findings demonstrate that the range of the clinical phenotype caused by GCK mutations varies from complete insulin deficiency to extreme hyperinsulinemia. Diabetes
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.