Wells in the Permian Basin continue to increase in technical complexity and lateral length, testing the limits of traditional completion practices in unconventional wells. Coiled tubing has been the standard method for drilling out frac plugs in the basin but has mechanical limitations in extended-reach and high-pressure laterals. Due to the increasing well complexity operators have begun using high technology hydraulic completion units (HCU), also known as a snubbing unit, to drill out frac plugs in certain Permian Basin wells. By using the HCU in wells with longer laterals, higher pressures, and downhole uncertainty/complexity some of the additional risk can be mitigated. The HCU system can provide a reliable and cost-effective means to cleanout laterals in the Permian Basin while reducing mechanical risk. The purpose of this paper is to present case histories that illustrate the positive impact of the HCU on field operations. This paper will also detail the evolution of the HCU over time to its current state of the art stand-alone rigless system.
In conjunction with the industry and basin-wide paradigm shift to drilling and completing extended laterals, Matador Resources Company (the operator) made significant plans in 2018 that would focus activity toward wells with laterals greater than one-mile. One operational hurdle to overcome in this shift change was the effective execution of removing frac plugs and sand at increased depths during a post-stimulation frac plug millout. Utilization of coiled-tubing units (CTUs) had been proven to be a successful millout method in one-mile laterals, but not without risk. Rig-assisted snubbing units coupled with workover rigs (WORs) provided for less risk with higher pulling strength capabilities and the ability to rotate tubing, but would often require operational time of up to twice that of typical coiled-tubing unit millouts. The stand-alone, rigless Hydraulic Completion Unit (HCU) was ultimately tested as a solution and proved to alleviate risks in extended lateral millouts while providing operational time and cost comparable to coiled-tubing units. The operator has since performed post-stimulation frac plug millouts on ∼45 horizontal wells in the Delaware Basin using HCUs. The majority of these wells carried lateral lengths of over 1.5 miles. Results and benefits observed by the operator include but are not limited to the list below: 1.) Ability to safely and consistently reach total depth (TD) on extended laterals through increased snubbing/pickup force and the HCU's pipe rotating ability 2.) Ability to pump at higher circulation rates in high-pressured wells (>3,500 psi wellhead pressure) to assist in effective wellbore cleaning 3.) Smaller footprint which allows for the utilization of two units simultaneously on multi-well pads 4.) Time and cost comparable to a standard coiled-tubing millout, particularly on multi-well pads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.