Abstract.We present a trajectory-based semiclassical calculation of the full counting statistics of quantum transport through chaotic cavities, in the regime of many open channels. Our method to obtain the mth moment of the density of transmission eigenvalues requires two correlated sets of m classical trajectories, therefore generalizing previous works on conductance and shot noise. The semiclassical results agree, for all values of m, with the corresponding predictions from random matrix theory.
We determine conditions for the quantisation of graphs using the Dirac operator for both two and four component spinors. According to the Bohigas-Giannoni-Schmit conjecture for such systems with time-reversal symmetry the energy level statistics are expected, in the semiclassical limit, to correspond to those of random matrices from the Gaussian symplectic ensemble. This is confirmed by numerical investigation. The scattering matrix used to formulate the quantisation condition is found to be independent of the type of spinor. We derive an exact trace formula for the spectrum and use this to investigate the form factor in the diagonal approximation.
Quantum graphs are commonly used as models of complex quantum systems, for example molecules, networks of wires and states of condensed matter. We consider quantum statistics for indistinguishable spinless particles on a graph, concentrating on the simplest case of Abelian statistics for two particles. In spite of the fact that graphs are locally one dimensional, anyon statistics emerge in a generalized form. A given graph may support a family of independent anyon phases associated with topologically inequivalent exchange processes. In addition, for sufficiently complex graphs, there appear new discrete-valued phases. Our analysis is simplified by considering combinatorial rather than metric graphs-equivalently, a many-particle tight-binding model. The results demonstrate that graphs provide an arena in which to study new manifestations of quantum statistics. Possible applications include topological quantum computing, topological insulators, the fractional quantum Hall effect, superconductivity and molecular physics.
Following the quantisation of a graph with the Dirac operator (spin-1/2) we explain how additional weights in the spectral form factor K(τ ) due to spin propagation around orbits produce higher order terms in the small-τ asymptotics in agreement with symplectic random matrix ensembles. We determine conditions on the group of spin rotations sufficient to generate CSE statistics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.