Furan is a potent cholangiocarcinogen in rat by an as yet undefined mechanism. The risk to man remains unclear. Using a time-course stop study design, we have investigated the potential of furan to induce oxidative stress and DNA damage associated with inflammatory and regenerative responses in rat liver. Furan was administered via oral gavage (30 mg/kg b.w. 5 daily doses per week), and livers were analyzed at time points between eight hr and three months. A one-month recovery group previously treated for three months was also included. There was a marked association between CYP2E1 expression and DNA oxidation (8-oxo-dG) in areas of centrilobular hepatocyte necrosis seen after a single dose. After one-month recovery from three-month treatment, 8-oxo-dG was still observed in areas of furan-induced cholangiofibrosis. Furan-induced changes in the expression of various genes associated with oxidative stress, DNA damage, and cell cycle control were identified during treatment and recovery. We propose that furan-induced cholangiocarcinomas emerge from areas of cholangiofibrosis as a result of a combination of chronic, persistent indirect damage to DNA through oxygen radicals coupled with persistent proliferative signals, including loss of connexin 32, that act to convert this DNA damage to fixed mutations.
Cholangiofibrosis is a structural anomaly that precedes the development of cholangiocarcinoma in some rodent models. In this article, the authors examine the contribution of the epithelial and mesenchymal cells in the pathogenesis of this complex lesion. Furan was administered to rats by gavage in corn oil at 30 mg/kg b.w. (five daily doses per week) and livers were sampled between eight hr to three months. Characteristically the administration of furan caused centrilobular injury, and restoration was accomplished by proliferation of hepatocytes. Some areas of the liver were, however, more severely affected, and here, injury extended into portal and capsular areas, which resulted in a rapid proliferation of ductular cells that extended into the parenchyma accompanied by a subtype of liver fibroblasts. These ductules either differentiated into hepatocytes, with loss of the associated fibroblasts, or progressed to form tortuous ductular structures that replaced much of the parenchyma, leading to cholangiofibrosis. Although it is unclear what determines the difference in the hepatic response, a loss of micro-environmental cues that instigate hepatocyte differentiation and termination of the hepatocyte stem cell repair response may be perturbed by continual furan administration that results in an irreversible expansile lesion that may mimic the features of cholangiocarcinoma.
We have developed the bioluminescent Salmonella reverse mutation assay as a tool for detecting mutagenicity applicable for high-throughput screening of new chemicals. In this study, we report the inter-laboratory evaluation of the assay using 10 model chemicals in five independent laboratories located in the USA (Groton, CT; Cambridge, MA and La Jolla, CA), Europe (Sandwich, Kent, UK) and Asia (Nagoya, Japan). The studies were performed in blinded fashion in all sites except for Groton and Cambridge laboratories. The chemicals were tested in at least three independent experiments using strains TA98-lux and TA100-lux in the presence and absence of metabolic activation. The results were statistically evaluated and compared to published results. Seven of the 10 compounds were positive in either TA98-lux and/or TA100-lux in the presence or absence of metabolic activation. The positive compound set included: nitrofurazone, 3-3'-dimethoxybenzidine, benzo[a]pyrene, 1,4-benzoquinone dioxime, 2-amino-5-nitrophenol, 2-bromo-4,6-dinitroaniline and busulfan. The remaining three compounds, namely, anthracene, crystal violet and benzyl chloride were negative in both Salmonella strains. Final results for individual compounds yielded 100% agreement among the laboratories and published data. Detailed comparison of all 40 individual test conditions yielded 93% (37 of 40) agreement among participating laboratories. We conclude that the bioluminescent Salmonella reverse mutation assay is a robust, accurate and economical higher throughput assay applicable for the mutagenicity screening of chemicals.
To assess the effects of long-term pressure overload on sympathetic presynaptic components in the left ventricle, young adult male rats were subjected to surgical constriction of the suprarenal abdominal aorta. At 4 and 8 wk postsurgery, but not at 1 wk, left ventricular sympathetic activity, measured by the net fractional norepinephrine (NE) decrease after alpha-methyl-p-tyrosine methyl ester administration, was elevated in the aortic-banded rats. However, left ventricular NE was reduced only at 8 wk. Scatchard analysis of saturation binding of [3H]nisoxetine, a specific ligand for NE uptake sites, determined that left ventricular NE transporter sites were also reduced at 8 wk, suggesting a relationship between a reduced number of uptake sites and loss of NE stores. In contrast, aortic constriction did not reduce neuropeptide Y (NPY), tyrosine hydroxylase, dopamine beta-hydroxylase, nervegrowth factor, and low-affinity nerve growth factor receptors at any time point. Thus long-term pressure overload can cause a selective reduction in ventricular NE stores without a reduction in NPY, a colocalized sympathetic neurotransmitter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.