We investigate a photonic regenerative memory based upon a neuromorphic oscillator with a delayed self-feedback (autaptic) connection. We disclose the existence of a unique temporal response characteristic of localized structures enabling an ideal support for bits in an optical buffer memory for storage and reshaping of data information. We link our experimental implementation, based upon a nanoscale nonlinear resonant tunneling diode driving a laser, to the paradigm of neuronal activity, the FitzHugh-Nagumo model with delayed feedback. This proof-of-concept photonic regenerative memory might constitute a building block for a new class of neuron-inspired photonic memories that can handle high bit-rate optical signals.
We demonstrate, experimentally and theoretically, excitable nanosecond optical pulses in optoelectronic integrated circuits operating at telecommunication wavelengths (1550 nm) comprising a nanoscale double barrier quantum well resonant tunneling diode (RTD) photo-detector driving a laser diode (LD). When perturbed either electrically or optically by an input signal above a certain threshold, the optoelectronic circuit generates short electrical and optical excitable pulses mimicking the spiking behavior of biological neurons. Interestingly, the asymmetric nonlinear characteristic of the RTD-LD allows for two different regimes where one obtain either single pulses or a burst of multiple pulses. The high-speed excitable response capabilities are promising for neurally inspired information applications in photonics.
Terahertz (THz) oscillators based on resonant tunneling diodes (RTDs) have relatively low output power, tens to hundreds of microwatts. The conventional designs employ submicron sized RTDs to reduce the device self-capacitance and, as a result, realise higher oscillation frequencies. However, reducing the RTD device size leads to lower output power. In this paper we present RTD oscillators which can employ one or two RTD devices of relatively large size, 9-25 µm 2 , for high power and, at the same time, can oscillate at THz frequencies. This is achieved through low resonating inductances realized by microstrip or coplanar waveguide (CPW) transmission line short stubs with low characteristic impedances (Z0), which have lower inductance values per unit length and so compensate the increase of the selfcapacitance of large area RTD devices. Thus, fabrication using only photolithography is possible. It is also shown that device sizing, which is limited only by bias stability considerations, does not limit device bandwidth. Further, we report a new way to estimate the RTD oscillator output power with frequency. A series of oscillators with oscillation frequencies in the 245-309 GHz range and output powers from 0.1-1 mW have been demonstrated showing the feasibility of the proposed approach. Index Terms-Resonant tunnelling diode (RTD), terahertz (THz) sources, photolithography.
We report on photo-detectors consisting of an optical waveguide that incorporates a resonant tunneling diode (RTD). Operating at wavelengths around 1.55 μm in the optical communications C band we achieve maximum sensitivities of around 0.29 A/W which is dependent on the bias voltage. This is due to the nature of RTD nonlinear current-voltage characteristic that has a negative differential resistance (NDR) region. The resonant tunneling diode photo-detector (RTD-PD) can be operated in either non-oscillating or oscillating regimes depending on the bias voltage quiescent point. The oscillating regime is apparent when the RTD-PD is biased in the NDR region giving rise to electrical gain and microwave self-sustained oscillations Taking advantage of the RTD's NDR distinctive characteristics, we demonstrate efficient detection of gigahertz (GHz) modulated optical carriers and optical control of a RTD GHz oscillator. RTD-PD based devices can have applications in generation and optical control of GHz low-phase noise oscillators, clock recovery systems, and fiber optic enabled radio frequency communication systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.