The Feng‐Sang River is a metropolitan river in Kaohsiung City, Taiwan. In this study, Feng‐Sang River sediments were analyzed to investigate the distributions and sources of polycyclic aromatic hydrocarbons (PAHs). The Sediment Quality Guidelines (SQGs), potentially carcinogenic PAHs (TEQcarc), and toxic equivalence quotient (TEQ) were applied to evaluate influences of PAHs on ecosystems and microbial diversities. Results indicate that PAHs concentrations varied between seasons and locations. The concentrations of ∑16PAHs ranged from 73.6 to 603.8 ng/kg in dry seasons and from 2.3 to 199.3 ng/kg in wet seasons. This could be because of the flushing effect during wet seasons, which caused the movement and dilution of the PAH‐contaminated sediments. Diagnostic ratio analysis infers that high PAHs levels were generated by combustion processes and vehicle traffic, and results from multivariate descriptive statistical analysis also demonstrate that the vehicular traffic pollution could be the major emission source of PAHs contamination. Comparisons of PAHs with SQGs indicate that PAHs concentrations in sediment were below the effects range low (ERL) values, and thus, the immediate threat to organisms might not be significant. The diagnostic ratio analyses are effective methods for PAH source appointment. The metagenomic assay results imply that sediments contained essential microbial species with eminent diversity. The detected PAH‐degrading bacteria (Desulfatiglans, Dechloromonas, Sphingomonas, Methylobacterium, Rhodobacter, Clostridium, and Exiguobacterium) played a key role in PAHs biotransformation, and Dechloromonas and Rhodobacter had a higher relative abundance. Results of microbial diversity analyses indicate that the contaminated environment induced the changes of governing microbial groups in sediments. Practitioner Points Diagnostic ratio analyses are effective methods for PAHs source appointment. Microbial composition in sediments are highly affected by anthropogenic pollution. Combustion and vehicle traffic contribute to urban river sediments pollution by PAHs. Dechloromonas and Rhodobacter are dominant PAHs‐degrading bacteria in sediments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.