Summary Imidazole glycerol phosphate synthase (IGPS) is a V-type allosteric enzyme, which is catalytically inactive for glutamine hydrolysis until the allosteric effector, N’-[(5′-phosphoribulosyl)formimino]-5-aminoimidazole-4-carboxamide-ribonucleotide (PRFAR) binds 30 Å away. In the apo state, NMR relaxation dispersion experiments indicate the absence of millisecond (ms) timescale motions. Binding of the PRFAR to form the active ternary complex is endothermic with a large positive entropy change. In addition, there is a protein wide enhancement of conformational motions in the ternary complex, which connect to two active sites. NMR chemical shift changes and acrylamide quenching experiments suggest that little in the way of structural changes accompany these motions. The data indicate that enzyme activation in the ternary complex is primarily due to an enhancement of ms motions that allows formation of a population of enzymatically active conformers.
Active-site loops are integral to the function of numerous enzymes. They enable substrate and product binding and release, sequester reaction intermediates, and recruit catalytic groups. Here, we examine the catalytic loop in the enzyme protein tyrosine phosphatase 1B (PTP1B). PTP1B has a mobile so-called WPD loop (named for its three N-terminal residues) that initiates the dephosphorylation of phosphortyrosine substrates upon loop closure. We have combined X-ray crystallography, solution NMR, and pre-steady-state kinetics experiments on wild-type and five WPD loop mutants to identify the relationships between the loop structure, dynamics, and function. The motions of the WPD loop are modulated by the formation of weak molecular interactions, where perturbations of these interactions modulate the conformational equilibrium landscape. The point mutants in the WPD loop alter the loop equilibrium position from a predominantly open state (P185A) to 50:50 (F182A), 35:65 (P188A), and predominantly closed states (T177A and P188A). Surprisingly, there is no correlation between the observed catalytic rates in the loop mutants and changes to the WPD loop equilibrium position. Rather, we observe a strong correlation between the rate of dephosphorylation of the phosphocysteine enzyme intermediate and uniform millisecond motions, not only within the loop but also in the adjacent α-helical domain of PTP1B. Thus, the control of loop motion and thereby catalytic activity is dispersed and resides within not only the loop sequence but also the surrounding protein architecture. This has broad implications for the general mechanistic understanding of enzyme reactions and the role that flexible loops play in the catalytic cycle.
Drug-like molecules targeting allosteric sites in proteins are of great therapeutic interest; however, identification of potential sites is not trivial. A straightforward approach to identify hidden allosteric sites is demonstrated in protein tyrosine phosphatases (PTP) by creation of single alanine mutations in the catalytic acid loop of PTP1B and VHR. This approach relies on the reciprocal interactions between an allosteric site and its coupled orthosteric site. The resulting NMR chemical shift perturbations (CSPs) of each mutant reveal clusters of distal residues affected by acid loop mutation. In PTP1B and VHR, two new allosteric clusters were identified in each enzyme. Mutations in these allosteric clusters detrimentally altered phosphatase activity with reductions in kcat/KM ranging from 30% to nearly 100-fold. This work outlines a simple method for identification of new allosteric sites in PTP, and given the basis of this method in thermodynamics, it is expected to be generally useful in other systems.
IGPS is a 51 kDa heterodimeric enzyme comprised of two proteins, HisH and HisF, that catalyze the hydrolysis of glutamine to produce NH 3 in the HisH active site and the cyclization of ammonia with N'-[(5'-phosphoribulosyl)formimino]-5-aminoimidazole-4-carboxamide-ribonucleotide (PRFAR) in HisF to produce imidazole glycerol phosphate (IGP) and 5-aminoimidazole-4-carboxamide ribotide (AICAR). Binding of PRFAR and IGP stimulates glutaminase activity in the HisH enzyme over 5000 and 100-fold, respectively, despite the active sites being > 25 Å apart. The details of this long-range protein communication process were investigated by solution NMR spectroscopy and CPMG relaxation dispersion experiments. Formation of the heterodimer enzyme results in a reduction in millisecond motions in HisF that extend throughout the protein. Binding of lGP results in an increase in protein-wide millisecond dynamics evidenced as severe NMR line broadening. Together, these data demonstrate a grouping of flexible residues that link the HisF active site with the protein interface to which HisH binds and provide a model for the path of communication between the IGPS active sites.
The energies and physical descriptors for the binding of 20 novel 1-(2,6-difluorobenzyl)-2-(2,6-difluorophenyl)benzimidazole analogues (BPBIs) to HIV-1 reverse transcriptase (RT) have been determined using Monte Carlo (MC) simulations. The crystallographic structure of the lead compound, 1-(2,6-difluorobenzyl)-2-(2,6-difluorophenyl)-4-methylbenzimidazole, was used as a starting point to model the inhibitors in both the bound and the unbound states. The energy terms and physical descriptors obtained from the calculations were correlated with their respective experimental EC(50) values, resulting in an r(2) value of 0.70 and a root-mean-square deviation (rms) of 0.53 kcal/mol. The terms in the correlation include the change in total Coulombic energy and solvent-accessible surface area. Structural analysis of the data files from the BPBI calculations reveals that all of the analogues with good biological activity show the formation of a hydrogen bond between the ligand and the backbone nitrogen atom of lysine 103. By use of the structural results, two novel BPBI inhibitors have been designed and calculations have been carried out. The results show the formation of the desired hydrogen bonds, and the DeltaG(binding) values predict the compounds to be excellent RT inhibitors. Subsequent synthesis and biological activity testing of these analogues have shown the validity of the predictive calculations. If the BPBIs are modeled in a site constructed from the crystal coordinates of a member of another class of nonnucleoside inhibitors (the 4,5,6,7-tetrahydroimidazo[4,5,1-jk][1,4]benzodiazepine-2(1H)-thione and -one (TIBO) compounds), the correlation with the same terms drops slightly, giving an r(2) value of 0.61 with an associated root-mean-square value of 0.53 kcal/mol. Conversely, if the TIBO compounds are modeled in a site constructed from the BPBI complex crystal coordinates, a correlation can be obtained using the drug-protein interaction energy and change in the total number of hydrogen bonds, giving an r(2) value of 0.63. These are the same descriptors that were used for the TIBO compounds modeled in their own sites, where the r(2) value was 0.72. These data suggest that it may be possible, in some cases, to design novel inhibitors utilizing structural data from related, but not identical, inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.