Skeletal muscle is recognized as vital to physical movement, posture, and breathing. In a less known but critically important role, muscle influences energy and protein metabolism throughout the body. Muscle is a primary site for glucose uptake and storage, and it is also a reservoir of amino acids stored as protein. Amino acids are released when supplies are needed elsewhere in the body. These conditions occur with acute and chronic diseases, which decrease dietary intake while increasing metabolic needs. Such metabolic shifts lead to the muscle loss associated with sarcopenia and cachexia, resulting in a variety of adverse health and economic consequences. With loss of skeletal muscle, protein and energy availability is lowered throughout the body. Muscle loss is associated with delayed recovery from illness, slowed wound healing, reduced resting metabolic rate, physical disability, poorer quality of life, and higher health care costs. These adverse effects can be combatted with exercise and nutrition. Studies suggest dietary protein and leucine or its metabolite β-hydroxy β-methylbutyrate (HMB) can improve muscle function, in turn improving functional performance. Considerable evidence shows that use of high-protein oral nutritional supplements (ONS) can help maintain and rebuild muscle mass and strength. We review muscle structure, function, and role in energy and protein balance. We discuss how disease- and age-related malnutrition hamper muscle accretion, ultimately causing whole-body deterioration. Finally, we describe how specialized nutrition and exercise can restore muscle mass, strength, and function, and ultimately reverse the negative health and economic outcomes associated with muscle loss.
ObjectiveDiabetes during gestation is one of the most common pregnancy complications associated with adverse health effects for the mother and the child. Maternal diabetes has been proposed to negatively affect the cognitive abilities of the child, but experimental research assessing its impact is conflicting. The main aim of our study was to compare the cognitive function in children of diabetic and healthy pregnant women.MethodsA systematic review and meta-analysis was conducted through a literature search using different electronic databases from the index date to January 31, 2015. We included studies that assessed the cognitive abilities in children (up to 14 years) of diabetic and non-diabetic mothers using standardized and validated neuropsychological tests.ResultsOf 7,698 references reviewed, 12 studies involving 6,140 infants met our inclusion criteria and contributed to meta-analysis. A random effect model was used to compute the standardized mean differences and 95% confidence interval (CI) were calculated. Infants (1–2 years) of diabetic mothers had significantly lower scores of mental and psychomotor development compared to control infants. The effect size for mental development was -0.41 (95% CI -0.59, -0.24; p<0.0001) and for psychomotor development was -0.31 (95% CI -0.55, -0.07; p = 0.0125) with non-significant heterogeneity. Diabetes during pregnancy could be associated with decreased intelligence quotient scores in school-age children, although studies showed significant heterogeneity.ConclusionThe association between maternal diabetes and deleterious effects on mental/psychomotor development and overall intellectual function in the offspring must be taken with caution. Results are based on observational cohorts and a direct causal influence of intrauterine hyperglycemia remains uncertain. Therefore, more trials that include larger populations are warranted to elucidate whether gestational diabetes mellitus (GDM) has a negative impact on offspring central nervous system (CNS).
Dexamethasone-induced muscle atrophy is due to an increase in protein breakdown and a decrease in protein synthesis, associated with an over-stimulation of the autophagy-lysosomal pathway. These effects are mediated by alterations in IGF-1 and PI3K/Akt signaling. In this study, we have investigated the effects of β-Hydroxy-β-methylbutyrate (HMB) on the regulation of autophagy and proteosomal systems. Rats were treated during 21 days with dexamethasone as a model of muscle atrophy. Co-administration of HMB attenuated the effects promoted by dexamethasone. HMB ameliorated the loss in body weight, lean mass and the reduction of the muscle fiber cross-sectional area (shrinkage) in gastrocnemius muscle. Consequently, HMB produced an improvement in muscle strength in the dexamethasone-treated rats. To elucidate the molecular mechanisms responsible for these effects, rat L6 myotubes were used. In these cells, HMB significantly attenuated lysosomal proteolysis induced by dexamethasone by normalizing the changes observed in autophagosome formation, LC3 II, p62 and Bnip3 expression after dexamethasone treatment. HMB effects were mediated by an increase in FoxO3a phosphorylation and concomitant decrease in FoxO transcriptional activity. The HMB effect was due to the restoration of Akt signaling diminished by dexamethasone treatment. Moreover, HMB was also involved in the regulation of the activity of ubiquitin and expression of MurF1 and Atrogin-1, components of the proteasome system that are activated or up-regulated by dexamethasone. In conclusion, in vivo and in vitro studies suggest that HMB exerts protective effects against dexamethasone-induced muscle atrophy by normalizing the Akt/FoxO axis that controls autophagy and ubiquitin proteolysis.
BackgroundL‐Leu and its metabolite β‐hydroxy‐β‐methylbutyrate (HMB) stimulate muscle protein synthesis enhancing the phosphorylation of proteins that regulate anabolic signalling pathways. Alterations in these pathways are observed in many catabolic diseases, and HMB and L‐Leu have proven their anabolic effects in in vivo and in vitro models. The aim of this study was to compare the anabolic effects of L‐Leu and HMB in myotubes grown in the absence of any catabolic stimuli.MethodsStudies were conducted in vitro using rat L6 myotubes under normal growth conditions (non‐involving L‐Leu‐deprived conditions). Protein synthesis and mechanistic target of rapamycin signalling pathway were determined.ResultsOnly HMB was able to increase protein synthesis through a mechanism that involves the phosphorylation of the mechanistic target of rapamycin as well as its downstream elements, pS6 kinase, 4E binding protein‐1, and eIF4E. HMB was significantly more effective than L‐Leu in promoting these effects through an activation of protein kinase B/Akt. Because the conversion of L‐Leu to HMB is limited in muscle, L6 cells were transfected with a plasmid that codes for α‐keto isocaproate dioxygenase, the key enzyme involved in the catabolic conversion of α‐keto isocaproate into HMB. In these transfected cells, L‐Leu was able to promote protein synthesis and mechanistic target of rapamycin regulated pathway activation equally to HMB. Additionally, these effects of leucine were reverted to a normal state by mesotrione, a specific inhibitor of α‐keto isocaproate dioxygenase.ConclusionOur results suggest that HMB is an active L‐Leu metabolite able to maximize protein synthesis in skeletal muscle under conditions, in which no amino acid deprivation occurred. It may be proposed that supplementation with HMB may be very useful to stimulate protein synthesis in wasting conditions associated with chronic diseases, such as cancer or chronic heart failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.