This paper introduces a general framework for market models, named Market Model Approach, through the concept of admissible sets of forward swap rates spanning a given tenor structure. We relate this concept to results in graph theory by showing that a set is admissible if and only if the associated graph is a tree. This connection enables us to enumerate all admissible models for a given tenor structure. Three main classes are identified within this framework and correspond to the co-terminal, co-initial, and cosliding model. We prove that the LIBOR market model is the only admissible model of a co-sliding type. By focusing on the co-terminal model in a lognormal setting, we develop and compare several approximating analytical formulae for caplets, while swaptions can be priced by a simple Black-type formula. A novel calibration technique is introduced to allow simultaneous calibration to caplet and swaption prices. Empirical calibration of the co-terminal model is shown to be faster, more robust, and more efficient than the same procedure applied to the LIBOR market model. We then argue that the co-terminal approach is the simplest and most convenient market model for pricing and hedging a large variety of exotic interest-rate derivatives.
This paper introduces a general framework for market models, named Market Model Approach, through the concept of admissible sets of forward swap rates spanning a given tenor structure. We relate this concept to results in graph theory by showing that a set is admissible if and only if the associated graph is a tree. This connection enables us to enumerate all admissible models for a given tenor structure. Three main classes are identified within this framework, and correspond to the co-terminal, co-initial, and co-sliding model. We prove that the LIBOR market model is the only admissible model of a co-sliding type. By focusing on the co-terminal model in a lognormal setting, we develop and compare several approximating analytical formulae for caplets, while swaptions can be priced by a simple Black-type formula. A novel calibration technique is introduced to allow simultaneous calibration to caplet and swaption prices. Empirical calibration of the co-terminal model is shown to be faster, more robust and more efficient than the same procedure applied to the LIBOR market model. We then argue that the co-terminal approach is the simplest and most convenient market model for pricing and hedging a large variety of exotic interest-rate derivatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.