Abstract.A new paradigm is presented to reconstruct the plasma current density profile in a tokamak in real-time. The traditional method of basing the reconstruction on real-time diagnostics combined with a real-time GradShafranov solver suffers from the difficulty of obtaining reliable internal current profile measurements with sufficient spatial and temporal accuracy to have a complete picture of the profile evolution at all times. A new methodology is proposed in which the plasma current density profile is simulated in real-time by solving the first-principle physics-based equations determining its evolution. Effectively, an interpretative transport simulation similar to those run today in post-plasma shot analysis is performed in real-time. This provides realtime reconstructions of the current density profile with spatial and temporal resolution constrained only by the capabilities of the computational platform used and not by the available diagnostics or the choice of basis functions. The diagnostic measurements available in real-time are used to constrain and improve the accuracy of the simulated profiles. Estimates of other plasma quantities, related to the current density profile, become available in real-time as well. The implementation of the proposed paradigm in the TCV tokamak is discussed, and its successful use in plasma experiments is demonstrated. This framework opens up the possibility of unifying q profile reconstructions across different tokamaks using a common physics model and will support a wealth of applications in which improved real-time knowledge of the plasma state is used for feedback control, disruption avoidance, scenario monitoring, and external disturbance estimation.
Highlights.• Algorithm vertical stabilisation using a linear parametrisation of the current density • Experimentally derived model of the vacuum vessel to account for vessel currents• Real-time contouring algorithm for flux surface averaged 1.5D transport equations• Full real time implementation coded in SIMULINK runs in less than 200µs• Applications: shape control, safety factor profile control, coupling with RAPTOR Abstract. Equilibrium reconstruction consists in identifying, from experimental measurements, a distribution of the plasma current density that satisfies the pressure balance constraint. The LIUQE code adopts a computationally efficient method to solve this problem, based on an iterative solution of the Poisson equation coupled with a linear parametrisation of the plasma current density. This algorithm is unstable against vertical gross motion of the plasma column for elongated shapes and its application to highly shaped plasmas on TCV requires a particular treatment of this instability. TCV's continuous vacuum vessel has a low resistance designed to enhance passive stabilisation of the vertical position. The eddy currents in the vacuum vessel have a sizeable influence on the equilibrium reconstruction and must be taken into account. A real time version of LIUQE has been implemented on TCV's distributed digital control system with a cycle time shorter than 200µs for a full spatial grid of 28 by 65, using all 133 experimental measurements and including the flux surface average of quantities necessary for the real time solution of 1.5D transport equations. This performance was achieved through a thoughtful choice of numerical methods and code optimisation techniques at every step of the algorithm, and was coded in MATLAB and SIMULINK for the off-line and real time version respectively.
During the first year of operation, the TCV tokamak has produced a large variety of plasma shapes and magnetic configurations, with 1 . O B J1.46T, I <800kA, ~S2.05, -0.7G%0.7. A new shape control algorithm, Eased on a finite element reconstruction of the plasma current in real time, has been implemented. Vertical growth rates of 800 sec-', corresponding to a stability margin f=l.IS, have been stabilized. Ohmic H-modes, with energy confinement times reaching 8 h s , normalized beta (p ,aB/I> of 1.9 and z P R 8 9 -P of 2.4 have been obtained in singlenuB X-point deuterium discharges with the ion grad B drift towards the X-point. Limiter H-modes with maximum line averaged electron densities of 1 . 7~1 0~~m -~ have been observed in D-shaped plasmas with 360kASIp&00kA.
Starting from a standard single null X-point configuration, a second order null divertor (snowflake (SF)) has been successfully created on the Tokamak à Configuration Variable (TCV) tokamak. The magnetic properties of this innovative configuration have been analysed and compared with a standard Xpoint configuration. For the SF divertor, the connection length and the flux expansion close to the separatrix exceed those of the standard X-point by more than a factor of 2. The magnetic shear in the plasma edge is also larger for the SF configuration.
A rotating coil probe for the magnetic field measurement on a long pulsed tokamak Rev.The TCV Tokamak was designed to create a large variety of plasma shapes. Such a large flexibility requires high precision magnetic measurements with a good spatial coverage. This article gives a detailed description of the magnetic sensor geometry, fabrication, calibration, the associated electronics, and the diagnostic operation and monitoring. A substantial effort has been made to quantify the precision in the measurements and a novel method has been developed to derive corrections in the sensor position and calibration which optimise the consistency of the entire measurement set. Accuracy of 0.5 mWb in the poloidal flux and 1 mT in the magnetic field with a position error of a few mm have been achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.