The insulin-like growth factors (IGFs) are essential for development; bioavailable IGF is tightly regulated by six related IGF-binding proteins (IGFBPs). Igfbp5 is the most conserved and is developmentally up-regulated in key lineages and pathologies; in vitro studies suggest that IGFBP-5 functions independently of IGF interaction. Genetic ablation of individual Igfbps has yielded limited phenotypes because of substantial compensation by remaining family members. Therefore, to reveal Igfbp5 actions in vivo, we generated lines of transgenic mice that ubiquitously overexpressed Igfbp5 from early development. Significantly increased neonatal mortality, reduced female fertility, whole-body growth inhibition, and retarded muscle development were observed in Igfbp5-overexpressing mice. The magnitude of the response in individual transgenic lines was positively correlated with Igfbp5 expression. Circulating IGFBP-5 concentrations increased a maximum of only 4-fold, total and free IGF-I concentrations increased up to 2-fold, and IGFBP-5 was detected in high Mr complexes; however, no detectable decrease in the proportion of free IGF-I was observed. Thus, despite only modest changes in IGF and IGFBP concentrations, the Igfbp5-overexpressing mice displayed a phenotype more extreme than that observed for other Igfbp genetic models. Although growth retardation was obvious prenatally, maximal inhibition occurred postnatally before the onset of growth hormone-dependent growth, regardless of Igfbp5 expression level, revealing a period of sensitivity to IGFBP-5 during this important stage of tissue programming.T he insulin-like growth factors (IGF-I and -II) are essential for growth and development (1). Six high-affinity IGF-binding proteins (IGFBP-1 to IGFBP-6; refs. 2 and 3) strictly orchestrate IGF action. Despite their considerable sequence homology, each exhibits a discrete expression pattern and possesses an individual subset of motifs, signifying that although IGFBPs have common actions, they may also have unique properties.IGFBP-5 is the most conserved of the IGFBPs (4) and has been highlighted as a focal regulatory factor during the development of several key cell lineages, e.g., myoblasts (5) and neural cells (6, 7). In mice, Igfbp5 is expressed in the embryo from early development, principally in the myotomal component of the somites and developing central nervous system (8). Postnatally, serum IGFBP-5, in common with IGFBP-3, forms a ternary complex with IGF-I or IGF-II and the acid-labile subunit (9). Igfbp5 is up-regulated in the aggressive pediatric cancer, rhabdomyosarcoma (10), in the progression of prostate cancers to androgen independence (11), and in smooth muscle-derived uterine leiomyoma (12), indicating a function in neoplasia.IGFBP-5 initially binds IGFs with high affinity, principally by an N-terminal motif (13), and inhibits IGF activity by preventing IGF interaction with the type 1 receptor. It is further subject to regulated posttranslational modifications (3) to induce conformational changes that dec...
The response of muscle and liver protein metabolism to either a single or three successive daily injections of an endotoxin (Escherichia coli lipopolysaccharide, serotype 0127 B8; 1 mg/ml, 0.3 mg/100 g body wt.) was studied in vivo in the fed rat, and at 24 and 30 h after endotoxin treatment during fasting. In the fed rats there was a catabolic response in muscle, owing to a 60-100% increase in muscle protein degradation rate, and a 52% fall in the synthesis rate. Although there was a 20% decrease in food intake, the decrease in protein synthesis was to some extent independent of this, since rats treated with endotoxin and fasted also showed a lower rate of muscle protein synthesis, which was in excess of the decrease caused by fasting alone. The mechanism of this decreased protein synthesis involved decreased translational activity, since in both fed and fasted rats there was a decreased rate of synthesis per unit of RNA. This occurred despite the fact that insulin concentrations were either maintained or increased, in the fasted rats, to those observed in fed rats. In the liver total protein mass was increased in the fed rats by 16% at 24 h, and the fractional synthesis rate at that time was increased by 35%. In rats fasted after endotoxin treatment the liver protein mass was not decreased as it was in the control fasted rats, and the fractional synthesis rate was increased by 22%. In both cases the increased synthesis rate reflected an elevated hepatic RNA concentration. The extent of this increase in hepatic protein synthesis was sufficient at one point to compensate for the fall in estimated muscle protein synthesis, so that the sum total in the two tissues was maintained.
Activation of either the phosphatidylinositol 3-kinase (PI 3-kinase)/Akt or the p38 mitogen-activated protein kinase (MAPK) signaling pathways accelerates myogenesis but only when the reciprocal pathway is functional. We therefore examined the hypothesis that cross-activation between these signaling cascades occurs to orchestrate myogenesis. We reveal a novel and reciprocal cross-talk and activation between the PI 3-kinase/Akt and p38 MAPK pathways that is essential for efficient myoblast differentiation. During myoblast differentiation, Akt kinase activity correlated with S473 but not T308 phosphorylation and occurred 24 h after p38 activation. Inhibition or activation of p38 with SB203580, dominant-negative p38, or MKK6EE regulated Akt kinase activity. Analysis of Akt isoforms revealed a specific increase in Akt2 protein levels that coincided with AktS473 phosphorylation during myogenesis and an enrichment of S473-phosphorylated Akt2. Akt2 promoter activity and protein levels were regulated by p38 activation, thus providing a mechanism for communication. Subsequent Akt activation by S473 phosphorylation was PI 3-kinase dependent and specific for Akt2 rather than Akt1. Complementary to p38-mediated transactivation of Akt, activation or inhibition of PI 3-kinase regulated p38 activity upstream of MKK6, demonstrating reciprocal communication and positive feedback characteristic of myogenic regulation. Our findings have identified novel communication between p38 MAPK and PI 3-kinase/Akt via Akt2.A hallmark of cellular differentiation in many lineages is the mutual exclusivity of proliferation and differentiation. Skeletal myogenesis is the precisely orchestrated process by which committed but proliferating myoblasts irreversibly exit from the cell cycle, acquire an apoptosis-resistant phenotype, and finally form multinucleated myotubes (44). Myogenesis therefore provides an excellent model for understanding the fundamental mechanisms that regulate cell fate specification and the apparent antagonism between cell multiplication and differentiation. Two groups of transcription factors, the myogenic determination factors (such as MyoD and myogenin) and the myocyte enhancer factor 2 (MEF2) proteins, are central to the coordination of myogenesis; these interact to modify chromatin structure and initiate muscle-specific gene expression (64).The p38 mitogen-activated protein kinase (MAPK) family was identified as part of the mechanism by which bacterial endotoxin induces cytokine expression (25, 38); they were therefore defined as stress-activated protein kinases. The results of subsequent studies of other cell systems suggest a significant role for p38 in differentiation (reviewed in reference 42); thus, its function is not confined to stress response. p38 has also been implicated in the regulation of cell cycle exit (as evidenced by direct phosphorylation of cyclin D1) (13) and of the retinoblastoma protein independent of cdk activity (58). p38 MAPKs exist as four isoforms: p38␣, p38, p38␥, and p38␦. They are mainly ac...
The effects of growth hormone (GH) and dietary protein on expression of IGF-I and GH receptor (GHR) genes in liver, muscle, and fat of pigs were investigated. Forty-eight intact male Large White x Landrace pigs were allotted to eight treatment groups (four diets with or without GH). The pigs were restriction-fed one of four diets, which differed only in their protein content (9.9, 13.1, 16.2, and 19.4%, as-fed basis), for a total of 3 wk. The pigs were then injected intramuscularly with either porcine GH (50 micrograms.kg-1.d-1 of rpST) or vehicle for the last 7 d. Pigs were slaughtered 4 h after the final injection. Total RNA was extracted from all tissues and then RNase protection assays were performed to measure expression of IGF-I and GHR genes. Expression of IGF-I mRNA was found to be GH responsive in the liver, semitendinosus (ST), and adipose tissue (P < .01) but not in longissimus muscle (LD). Dietary protein increased IGF-I expression only in the adipose tissue (P < .01). Expression of class 2 transcripts of IGF-I were observed only in the livers of GH-treated pigs, with no effect of dietary protein. Expression of GHR mRNA was found to increase with GH administration in liver and skeletal muscle (LD and ST, P < .05) but not in adipose tissue. There were diet x GH interactions on GHR expression in liver, ST, and adipose tissue, resulting in the highest GHR expression being in the high protein-fed, GH-treated group for liver, but in the low protein-fed, GH-treated group for muscle and adipose tissue. This study demonstrates tissue-specific control of expression of the two genes and also tissue-specific promoter usage (IGF-I exon 2 in liver) in response to GH administration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.