A quality control system especially designed for dosimetry in scanning proton beams has been designed and tested. The system consists of a scintillating screen (Gd2O2S:Tb), mounted at the beam-exit side of a phantom, and observed by a low noise CCD camera with a long integration time. The purpose of the instrument is to make a fast and accurate two-dimensional image of the dose distribution at the screen position in the phantom. The linearity of the signal with the dose, the noise in the signal, the influence of the ionization density on the signal, and the influence of the field size on the signal have been investigated. The spatial resolution is 1.3 mm (1 s.d.), which is sufficiently smaller than typical penumbras in dose distributions. The measured yield depends linearly on the dose and agrees within 5% with the calculations. In the images a signal to noise ration (signal/1 s.d.) of 10(2) has been found, which is in the same order of magnitude as expected from the calculations. At locations in the dose distribution possessing a strong contribution of high ionization densities (i.e., in the Bragg peak), we found some quenching of the light output, which can be described well by existing models if the beam characteristics are known. For clinically used beam characteristics such as a Spread Out Bragg peak, there is at most 8% deviation from the NACP ionization chamber measurements. The conclusion is that this instrument is a useful tool for quick and reliable quality control of proton beams. The long integration-time capabilities of the system make it worthwhile to investigate its applicability in scanning proton beams and other dynamic treatment modalities.
A two-dimensionally position sensitive dosimetry system has been tested for different dosimetric applications in a radiation therapy facility with a scanning proton beam. The system consists of a scintillating (fluorescent) screen, mounted at the beam-exit side of a phantom and it is observed by a charge coupled device (CCD) camera. The observed light distribution at the screen is equivalent to the two-dimensional (2D)-dose distribution at the screen position. It has been found that the dosimetric properties of the system, measured in a scanning proton beam, are equal to those measured in a proton beam broadened by a scattering system. Measurements of the transversal dose distribution of a single pencil beam are consistent with dose measurements as well as with dose calculations in clinically relevant fields made with multiple pencil beams. Measurements of inhomogeneous dose distributions have shown to be of sufficient accuracy to be suitable for the verification of dose calculation algorithms. The good sensitivity and sub-mm spatial resolution of the system allows for the detection of deviations of a few percent in dose from the expected (intended or calculated) dose distribution. Its dosimetric properties and the immediate availability of the data make this device a useful tool in the quality control of scanning proton beams.
Monte Carlo simulations have been performed to determine the influence of collimator-scattered protons from a 150 MeV proton beam on the dose distribution behind a collimator. Slit-shaped collimators with apertures between 2 and 20 mm have been simulated. The Monte Carlo code GEANT 3.21 has been validated against one-dimensional dose measurements with a scintillating screen, observed by a CCD camera. In order to account for the effects of the spatial response of the CCD/scintillator system, the line-spread function was determined by comparison with measurements made with a diamond detector. The line-spread function of the CCD/scintillator system is described by a Gaussian distribution with a standard deviation of 0.22 mm. The Monte Carlo simulations show that protons that hit the collimator on the entrance face and leave it through the wall of the aperture make the largest scatter contribution. Scatter on air is the major contribution to the extent of the penumbra. From the energy spectra it is derived that protons with a relative biological effectiveness greater than 1 cause at most 1% more damage in tissue than what would be expected from the physical dose.
A two-dimensional position sensitive dosimetry system based on a scintillating gas detector has been developed for pre-treatment verification of dose distributions in hadron therapy. The dosimetry system consists of a chamber filled with an Ar/CF 4 scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. The primary electrons, created in the detector's sensitive volume by the incoming beam, drift in an electric field towards the GEMs and undergo gas multiplication in the GEM holes. During this process, photons are emitted by the excited Ar/CF 4 gas molecules and detected by a mirror-lens-CCD camera system. Since the amount of emitted light is proportional to the dose deposited in the sensitive volume of the detector by the incoming beam, the intensity distribution of the measured light spot is proportional to the 2D hadron dose distribution. For a measurement of a 3D dose distribution, the scintillating gas detector is mounted at the beam exit side of a water-bellows phantom, whose thickness can be varied in steps. In this work, the energy dependence of the output signal of the scintillating gas detector has been verified in a 250 MeV/u clinical 12 C ion beam by means of a depth-dose curve measurement. The underestimation of the measured signal at the Bragg peak depth is only 9% with respect to an airfilled ionization chamber. This is much smaller than the underestimation found for a scintillating Gd 2 O 2 S:Tb ('Lanex') screen under the same measurement conditions (43%). Consequently, the scintillating gas detector is a promising device for verifying dose distributions in high LET beams, for example to check hadron therapy treatment plans which comprise beams with different energies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.