p300 is a multifunctional transcriptional coactivator that serves as an adapter for several transcription factors including nuclear steroid hormone receptors. p300 possesses an intrinsic histone acetyltransferase (HAT) activity that may be critical for promoting steroid-dependent transcriptional activation. In osteoblastic cells, transcription of the bone-specific osteocalcin (OC) gene is principally regulated by the Runx2/Cbfa1 transcription factor and is stimulated in response to vitamin D 3 via the vitamin D 3 receptor complex. Therefore, we addressed p300 control of basal and vitamin D 3 -enhanced activity of the OC promoter. We find that transient overexpression of p300 results in a significant dose-dependent increase of both basal and vitamin D 3 -stimulated OC gene activity. This stimulatory effect requires intact Runx2/Cbfa1 binding sites and the vitamin D-responsive element. In addition, by coimmunoprecipitation, we show that the endogenous Runx2/ Cbfa1 and p300 proteins are components of the same complexes within osteoblastic cells under physiological concentrations. We also demonstrate by chromatin immunoprecipitation assays that p300, Runx2/Cbfa1, and 1␣,25-dihydroxyvitamin D 3 receptor interact with the OC promoter in intact osteoblastic cells expressing this gene. The effect of p300 on the OC promoter is independent of its intrinsic HAT activity, as a HAT-deficient p300 mutant protein up-regulates expression and cooperates with P/CAF to the same extent as the wild-type p300. On the basis of these results, we propose that p300 interacts with key transcriptional regulators of the OC gene and bridges distal and proximal OC promoter sequences to facilitate responsiveness to vitamin D 3 .The rat osteocalcin (OC) gene encodes a 10-kDa bonespecific protein that is induced in osteoblasts with the onset of mineralization at late stages of differentiation (26). Transcription of the OC gene is controlled by modularly distributed basal and hormone-responsive elements, located within two DNase I-hypersensitive sites (distal site, positions Ϫ600 to Ϫ400; proximal site, positions Ϫ170 to Ϫ70) that are present only in bone-derived cells expressing this gene (23,24). Thus, chromatin remodeling of the OC gene promoter accompanies the onset in OC gene expression during osteoblast differentiation (Fig. 1). A key regulatory element that controls OC gene expression is recognized by the 1␣,25-dihydroxyvitamin D 3 receptor (VDR) complex upon ligand activation. This vitamin D 3 -responsive element (VDRE) is located in the distal region (Fig. 1) of the OC promoter (positions Ϫ465 to Ϫ437) and functions as an enhancer to increase OC gene transcription by three-to fivefold (20). Binding of the ligand 1␣,25-dihydroxyvitamin D 3 (vitamin D 3 ) induces conformational changes in the receptor that enable it to interact with several coactivators, such as NCoA-1/SRC-1 (nuclear receptor coactivator 1/steroid receptor coactivator 1), NCoA-2/GRIP/TIF2 (nuclear receptor coactivator 2/glucocorticoid receptor-interacting protein/transcrip...
The Drosophila genome-sequencing project has revealed a total of seven genes encoding eight eukaryotic initiation factor 4E (eIF4E) isoforms. Four of them (eIF4E-1,2, eIF4E-3, eIF4E-4 and eIF4E-5) share exon/intron structure in their carboxy-terminal part and form a cluster in the genome. All eIF4E isoforms bind to the cap (m7GpppN) structure. All of them, except eIF4E-6 and eIF4E-8 were able to interact with Drosophila eIF4G or eIF4E-binding protein (4E-BP). eIF4E-1, eIF4E-2, eIF4E-3, eIF4E-4 and eIF4E-7 rescued a yeast eIF4E-deficient mutant in vivo. Only eIF4E-1 mRNAs and, at a significantly lower level, eIF4E3 and eIF4E-8 are expressed in embryos and throughout the life cycle of the fly. The transcripts of the remaining isoforms were detected from the third instar larvae onwards. This indicates the cap-binding activity relies mostly on eIF4E-1 during embryogenesis. This agrees with the proteomic analysis of the eIF4F complex purified from embryos and with the rescue of l(3)67Af, an embryonic lethal mutant for the eIF4E-1,2 gene, by transgenic expression of eIF4E-1. Overexpression of eIF4E-1 in wild-type embryos and eye imaginal discs results in phenotypic defects in a dose-dependent manner.
Translation is a sensitive regulatory step during cellular stress and the apoptosis response. Under such conditions, cap-dependent translation is reduced and internal ribosome entry site (IRES)-dependent translation plays a major role. However, many aspects of how mRNAs are translated under stress remain to be elucidated. Here we report that reaper mRNA, a pro-apoptotic gene from Drosophila melanogaster, is translated in a cap-independent manner. In Drosophila mutant embryos devoid of the eukaryotic initiation factor 4E (eIF4E), reaper transcription is induced and apoptosis proceeds. In vitro translation experiments using wild-type and eIF4E mutant embryonic extracts show that reporter mRNA bearing reaper 5 untranslated region (UTR) is effectively translated in a cap-independent manner. The 5UTR of reaper exhibits a high degree of similarity with that of Drosophila heat shock protein 70 mRNA, and both display IRES activity. Studies of mRNA association to polysomes in embryos indicate that both reaper and heat shock protein 70 mRNAs are recruited to polysomes under apoptosis or thermal stress. Our data suggest that heat shock protein 70 and reaper, two antagonizing factors in apoptosis, use a similar mechanism for protein synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.