In this letter, we determine the κ-distribution function for a gas in the presence of an external field of force described by a potential U(r). In the case of a dilute gas, we show that the κ-power law distribution including the potential energy factor term can rigorously be deduced in the framework of kinetic theory with basis on the Vlasov equation. Such a result is significant as a preliminary to the discussion on the role of long range interactions in the Kaniadakis thermostatistics and the underlying kinetic theory.
A "dança" aleatória de pequenas partículas em suspensão num líquido, um fenômeno conhecido como movimento browniano, foi primeiramente explicado por Einstein na sua famosa tese de doutorado. Seguindo uma perspectiva histórica, mostramos como este fenômeno pode ser descrito de quatro maneiras distintas, a saber: o tratamento difusivo de Einstein, a variante estocástica ou de força flutuante proposta por Paul Langevin, a abordagem via equação de Fokker-Planck, e finalmente, as caminhadas aleatórias de Mark Kac. Discutiremos também as limitações presentes na abordagem difusiva. Em particular, mostramos que a equação parabólica na qual Einstein baseou sua explicação deve ser substituída por uma equação do tipo hiperbólica que também surge naturalmente no tratamento via caminhadas aleatórias. A solução geral dessa equaçãoé obtida e comparada com o resultado padrão. Para tempos curtos, comparados com as escalas de tempo características do sistema, o movimento das partículas segue um comportamento ondulatório. Palavras-chave: Einstein, movimento browniano, Paul Langevin, Fokker-Planck.The random trajectory of small particles in suspension within a liquid, a phenomenon known as brownian motion, was firstly explained by Einstein in his famous doctorate thesis. From a historical perspective, we show how such a phenomenon can be described in four different ways, namely: the Einstein diffusive treatment, the stochastic variant or fluctuating force proposed by Paul Langevin, the approach through the Fokker-Planck equation, and, finally, the random walks by Mark Kac. Some limitations present in the standard diffusive approach are also discussed. In particular, we show that the parabolic equation in which Einstein based his explanation should be replaced by a hyperbolic equation of motion which also appears naturally in the treatment of random walks. The general solution of the generalized diffusion equation is obtained and compared to the standard result. For short times, in comparison with the characteristic time scales of the system, the motion of the particles is described by a wave behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.